@article{SchroenZachariasWomacketal.2018, author = {Schr{\"o}n, Martin and Zacharias, Steffen and Womack, Gary and K{\"o}hli, Markus and Desilets, Darin and Oswald, Sascha and Bumberger, Jan and Mollenhauer, Hannes and K{\"o}gler, Simon and Remmler, Paul and Kasner, Mandy and Denk, Astrid and Dietrich, Peter}, title = {Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment}, series = {Geoscientific instrumentation, methods and data systems}, volume = {7}, journal = {Geoscientific instrumentation, methods and data systems}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2193-0856}, doi = {10.5194/gi-7-83-2018}, pages = {83 -- 99}, year = {2018}, abstract = {Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type "CRS1000" were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1\% of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research.}, language = {en} } @article{StoltnowWeisKorges2023, author = {Stoltnow, Malte and Weis, Philipp and Korges, Maximilian}, title = {Hydrological controls on base metal precipitation and zoning at the porphyry-epithermal transition constrained by numerical modeling}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-023-30572-5}, pages = {15}, year = {2023}, abstract = {Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. Here, we present new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. We quantitatively investigate the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation.}, language = {en} } @article{BraunGemignanivanderBeek2018, author = {Braun, Jean and Gemignani, Lorenzo and van der Beek, Pieter A.}, title = {Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands}, series = {Earth surface dynamics}, volume = {6}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-6-257-2018}, pages = {257 -- 270}, year = {2018}, abstract = {One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i. e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes.}, language = {en} } @article{AriagnoLeBouteillervanderBeeketal.2022, author = {Ariagno, Coline and Le Bouteiller, Caroline and van der Beek, Pieter A. and Klotz, S{\´e}bastien}, title = {Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix-Bl{\´e}one Critical Zone Observatory, SE France}, series = {Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-10-81-2022}, pages = {81 -- 96}, year = {2022}, abstract = {At the interface between the lithosphere and the atmosphere, the critical zone records the complex interactions between erosion, climate, geologic substrate, and life and can be directly monitored. Long data records (30 consecutive years for sediment yields) collected in the sparsely vegetated, steep, and small marly badland catchments of the Draix-Bleone Critical Zone Observatory (CZO), SE France, allow analyzing potential climatic controls on regolith dynamics and sediment export. Although widely accepted as a first-order control, rainfall variability does not fully explain the observed interannual variability in sediment export. Previous studies in this area have suggested that frost-weathering processes could drive regolith production and potentially modulate the observed pattern of sediment export. Here, we define sediment export anomalies as the residuals from a predictive model with annual rainfall intensity above a threshold as the control. We then use continuous soil temperature data recorded at different locations over multiple years to highlight the role of different frost-weathering processes (i.e., ice segregation versus volumetric expansion) in regolith production. Several proxies for different frost-weathering processes have been calculated from these data and compared to the sediment export anomalies, with careful consideration of field data quality. Our results suggest that frost-cracking intensity (linked to ice segregation) can explain about half (47 \%-64 \%) of the sediment export anomalies. In contrast, the number of freeze-thaw cycles (linked to volumetric expansion) has only a minor impact on catchment sediment response. The time spent below 0 degrees C also correlates well with the sediment export anomalies and requires fewer field data to be calculated than the frost-cracking intensity. Thus, frost-weathering processes modulate sediment export by controlling regolith production in these catchments and should be taken into account when building predictive models of sediment export from these badlands under a changing climate.}, language = {en} } @article{FuchsPalmtagJuhlsetal.2022, author = {Fuchs, Matthias and Palmtag, Juri and Juhls, Bennet and Overduin, Pier Paul and Grosse, Guido and Abdelwahab, Ahmed and Bedington, Michael and Sanders, Tina and Ogneva, Olga and Fedorova, Irina and Zimov, Nikita S. and Mann, Paul J. and Strauss, Jens}, title = {High-resolution bathymetry models for the Lena Delta and Kolyma Gulf coastal zones}, series = {Earth system science data}, volume = {14}, journal = {Earth system science data}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-2279-2022}, pages = {2279 -- 2301}, year = {2022}, abstract = {Arctic river deltas and deltaic near-shore zones represent important land-ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments as well as assess impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow, and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75 000 locations from large-scale (1 V 25000-1 V 500000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in northeastern Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta and gulf regions in 50 and 200m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r>0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic-ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean, but they may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modeling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository for the Lena Delta (https://doi.org/10.1594/PANGAEA.934045; Fuchs et al., 2021a) and Kolyma Gulf region (https://doi.org/10.1594/PANGAEA.934049; Fuchs et al., 2021b), respectively. Likewise, the depth validation data are available on PANGAEA as well (https://doi.org/10.1594/PANGAEA.933187; Fuchs et al., 2021c).}, language = {en} } @misc{CescaStichGrigolietal.2022, author = {Cesca, Simone and Stich, Daniel and Grigoli, Francesco and Vuan, Alessandro and L{\´o}pez-Comino, Jos{\´e} {\´A}ngel and Niemz, Peter and Blanch, Estefan{\´i}a and Dahm, Torsten and Ellsworth, William L.}, title = {Reply to: Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-022-30904-5}, pages = {4}, year = {2022}, language = {en} } @article{KumarHesseRaoetal.2020, author = {Kumar, Rohini and Hesse, Fabienne and Rao, P. Srinivasa and Musolff, Andreas and Jawitz, James and Sarrazin, Francois and Samaniego, Luis and Fleckenstein, Jan H. and Rakovec, Oldrich and Thober, S. and Attinger, Sabine}, title = {Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-19955-8}, pages = {1 -- 10}, year = {2020}, abstract = {Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75\% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50\%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes.}, language = {en} } @article{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Lithosphere}, volume = {2020}, journal = {Lithosphere}, number = {1}, publisher = {GSA}, address = {Boulder, Colo.}, issn = {1947-4253}, doi = {10.2113/2020/8888588}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} } @article{ArboledaZapataAngelopoulosOverduinetal.2022, author = {Arboleda-Zapata, Mauricio and Angelopoulos, Michael and Overduin, Pier Paul and Grosse, Guido and Jones, Benjamin M. and Tronicke, Jens}, title = {Exploring the capabilities of electrical resistivity tomography to study subsea permafrost}, series = {The Cryosphere}, volume = {16}, journal = {The Cryosphere}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1994-0424}, doi = {10.5194/tc-16-4423-2022}, pages = {4423 -- 4445}, year = {2022}, abstract = {Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments.}, language = {en} } @article{CescaSuganRudzinskietal.2022, author = {Cesca, Simone and Sugan, Monica and Rudzinski, Lukasz and Vajedian, Sanaz and Niemz, Peter and Plank, Simon and Petersen, Gesa and Deng, Zhiguo and Rivalta, Eleonora and Vuan, Alessandro and Linares, Milton Percy Plasencia and Heimann, Sebastian and Dahm, Torsten}, title = {Massive earthquake swarm driven by magmatic intrusion at the Bransfield Strait, Antarctica}, series = {Communications earth and environment}, volume = {3}, journal = {Communications earth and environment}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2662-4435}, doi = {10.1038/s43247-022-00418-5}, pages = {11}, year = {2022}, abstract = {An earthquake swarm affected the Bransfield Strait, Antarctica, a unique rift basin in transition from intra-arc rifting to ocean spreading. The swarm, counting similar to 85,000 volcano-tectonic earthquakes since August 2020, is located close to the Orca submarine volcano, previously considered inactive. Simultaneously, geodetic data reported up to similar to 11 cm north-westward displacement over King George Island. We use a broad variety of geophysical data and methods to reveal the complex migration of seismicity, accompanying the intrusion of 0.26-0.56 km(3) of magma. Strike-slip earthquakes mark the intrusion at depth, while shallower normal faulting the similar to 20 km long lateral growth of a dike. Seismicity abruptly decreased after a Mw 6.0 earthquake, suggesting the magmatic dike lost pressure with the slipping of a large fault. A seafloor eruption is likely, but not confirmed by sea surface temperature anomalies. The unrest documents episodic magmatic intrusion in the Bransfield Strait, providing unique insights into active continental rifting.}, language = {en} } @article{VehLuetzowKharlamovaetal.2022, author = {Veh, Georg and L{\"u}tzow, Natalie and Kharlamova, Varvara and Petrakov, Dmitry and Hugonnet, Romain and Korup, Oliver}, title = {Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods}, series = {Earth's Future}, volume = {10}, journal = {Earth's Future}, edition = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jersey}, issn = {2328-4277}, doi = {10.1029/2021EF002426}, pages = {1 -- 14}, year = {2022}, abstract = {Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.}, language = {en} } @article{BereswillGatzMillerSuetal.2023, author = {Bereswill, Sarah and Gatz-Miller, Hannah and Su, Danyang and T{\"o}tzke, Christian and Kardjilov, Nikolay and Oswald, Sascha and Mayer, Klaus Ulrich}, title = {Coupling non-invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone}, series = {Vadose zone journal}, volume = {22}, journal = {Vadose zone journal}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20268}, pages = {19}, year = {2023}, abstract = {Oxygen (O-2) availability in soils is vital for plant growth and productivity. The transport and consumption of O-2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three-dimensional root system architecture and the spatiotemporal dynamics of soil moisture (\& theta;) and O-2 concentrations in the root zone of maize (Zea mays) via non-invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non-invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured \& theta; and O-2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten \& alpha; and n), better reproduced the measured \& theta; and O-2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O-2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O-2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.}, language = {en} } @article{JaraMunozMelnickLietal.2022, author = {Jara Mu{\~n}oz, Julius and Melnick, Daniel and Li, Shaoyang and Socquet, Anne and Cort{\´e}s-Aranda, Joaqu{\´i}n and Brill, Dominik and Strecker, Manfred}, title = {The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-30754-1}, pages = {13}, year = {2022}, abstract = {The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 ± 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 ± 0.2 ka recurrence time for Mw~7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere.}, language = {en} } @article{JoziNajafabadiHaberlandRybergetal.2021, author = {Jozi Najafabadi, Azam and Haberland, Christian and Ryberg, Trond and Verwater, Vincent F. and Breton, Eline le and Handy, Mark R. and Weber, Michael}, title = {Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion}, series = {Solid earth : SE ; an interaktive open access journal of the European Geosciences Union}, volume = {12}, journal = {Solid earth : SE ; an interaktive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {AlpArray Working Grp, AlpArray SWATH-D Working Grp}, issn = {1869-9529}, doi = {10.5194/se-12-1087-2021}, pages = {1087 -- 1109}, year = {2021}, abstract = {In this study, we analyzed a large seismological dataset from temporary and permanent networks in the southern and eastern Alps to establish high-precision hypocenters and 1-D V-P and V-P/V-S models. The waveform data of a subset of local earthquakes with magnitudes in the range of 1-4.2 M-L were recorded by the dense, temporary SWATH-D network and selected stations of the AlpArray network between September 2017 and the end of 2018. The first arrival times of P and S waves of earthquakes are determined by a semi-automatic procedure. We applied a Markov chain Monte Carlo inversion method to simultaneously calculate robust hypocenters, a 1-D velocity model, and station corrections without prior assumptions, such as initial velocity models or earthquake locations. A further advantage of this method is the derivation of the model parameter uncertainties and noise levels of the data. The precision estimates of the localization procedure is checked by inverting a synthetic travel time dataset from a complex 3-D velocity model and by using the real stations and earthquakes geometry. The location accuracy is further investigated by a quarry blast test. The average uncertainties of the locations of the earthquakes are below 500m in their epicenter and similar to 1.7 km in depth. The earthquake distribution reveals seismicity in the upper crust (0-20 km), which is characterized by pronounced clusters along the Alpine frontal thrust, e.g., the Friuli-Venetia (FV) region, the Giudicarie-Lessini (GL) and Schio-Vicenza domains, the Austroalpine nappes, and the Inntal area. Some seismicity also occurs along the Periadriatic Fault. The general pattern of seismicity reflects head-on convergence of the Adriatic indenter with the Alpine orogenic crust. The seismicity in the FV and GL regions is deeper than the modeled frontal thrusts, which we interpret as indication for southward propagation of the southern Alpine deformation front (blind thrusts).}, language = {en} } @article{SmithBoers2023, author = {Smith, Taylor and Boers, Niklas}, title = {Global vegetation resilience linked to water availability and variability}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-023-36207-7}, pages = {11}, year = {2023}, abstract = {Quantifying the resilience of vegetated ecosystems is key to constraining both present-day and future global impacts of anthropogenic climate change. Here we apply both empirical and theoretical resilience metrics to remotely-sensed vegetation data in order to examine the role of water availability and variability in controlling vegetation resilience at the global scale. We find a concise global relationship where vegetation resilience is greater in regions with higher water availability. We also reveal that resilience is lower in regions with more pronounced inter-annual precipitation variability, but find less concise relationships between vegetation resilience and intra-annual precipitation variability. Our results thus imply that the resilience of vegetation responds differently to water deficits at varying time scales. In view of projected increases in precipitation variability, our findings highlight the risk of ecosystem degradation under ongoing climate change. Vegetation dynamics depend on both the amount of precipitation and its variability over time. Here, the authors show that vegetation resilience is greater where water availability is higher and where precipitation is more stable from year to year.}, language = {en} } @misc{BarboliniWoutersenDupontNivetetal.2020, author = {Barbolini, Natasha and Woutersen, Amber and Dupont-Nivet, Guillaume and Silvestro, Daniele and Tardif-Becquet, Delphine and Coster, Pauline M. C. and Meijer, Niels and Chang, Cun and Zhang, Hou-Xi and Licht, Alexis and Rydin, Catarina and Koutsodendris, Andreas and Han, Fang and Rohrmann, Alexander and Liu, Xiang-Jun and Zhang, Y. and Donnadieu, Yannick and Fluteau, Frederic and Ladant, Jean-Baptiste and Le Hir, Guillaume and Hoorn, M. Carina}, title = {Cenozoic evolution of the steppe-desert biome in Central Asia}, series = {Science Advances}, volume = {6}, journal = {Science Advances}, number = {41}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.abb8227}, pages = {16}, year = {2020}, abstract = {The origins and development of the arid and highly seasonal steppe-desert biome in Central Asia, the largest of its kind in the world, remain largely unconstrained by existing records. It is unclear how Cenozoic climatic, geological, and biological forces, acting at diverse spatial and temporal scales, shaped Central Asian ecosystems through time. Our synthesis shows that the Central Asian steppe-desert has existed since at least Eocene times but experienced no less than two regime shifts, one at the Eocene-Oligocene Transition and one in the mid-Miocene. These shifts separated three successive "stable states," each characterized by unique floral and faunal structures. Past responses to disturbance in the Asian steppe-desert imply that modern ecosystems are unlikely to recover their present structures and diversity if forced into a new regime. This is of concern for Asian steppes today, which are being modified for human use and lost to desertification at unprecedented rates.}, language = {en} } @article{WoutersenJardineGiovanniBogotaAngeletal.2018, author = {Woutersen, Amber and Jardine, Phillip E. and Giovanni Bogota-Angel, Raul and Zhang, Hong-Xiang and Silvestro, Daniele and Antonelli, Alexandre and Gogna, Elena and Erkens, Roy H. J. and Gosling, William D. and Dupont-Nivet, Guillaume and Hoorn, Carina}, title = {A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the halophytic taxon Nitraria L.(Nitrariaceae)}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, publisher = {PeerJ Inc.}, address = {London}, issn = {2167-8359}, doi = {10.7717/peerj.5055}, pages = {31}, year = {2018}, abstract = {Nitraria is a halophytic taxon (i.e., adapted to saline environments) that belongs to the plant family Nitrariaceae and is distributed from the Mediterranean, across Asia into the south-eastern tip of Australia. This taxon is thought to have originated in Asia during the Paleogene (66-23 Ma), alongside the proto-Paratethys epicontinental sea. The evolutionary history of Nitraria might hold important clues on the links between climatic and biotic evolution but limited taxonomic documentation of this taxon has thus far hindered this line of research. Here we investigate if the pollen morphology and the chemical composition of the pollen wall are informative of the evolutionary history of Nitraria and could explain if origination along the proto-Paratethys and dispersal to the Tibetan Plateau was simultaneous or a secondary process. To answer these questions, we applied a novel approach consisting of a combination of Fourier Transform Infrared spectroscopy (FTIR), to determine the chemical composition of the pollen wall, and pollen morphological analyses using Light Microscopy (LM) and Scanning Electron Microscopy (SEM). We analysed our data using ordinations (principal components analysis and non-metric multidimensional scaling), and directly mapped it on the Nitrariaceae phylogeny to produce a phylomorphospace and a phylochemospace. Our LM, SEM and FTIR analyses show clear morphological and chemical differences between the sister groups Peganum and Nitraria. Differences in the morphological and chemical characteristics of highland species (Nitraria schoberi, N. sphaerocarpa, N. sibirica and N. tangutorum) and lowland species (Nitraria billardierei and N. retusa) are very subtle, with phylogenetic history appearing to be a more important control on Nitraria pollen than local environmental conditions. Our approach shows a compelling consistency between the chemical and morphological characteristics of the eight studied Nitrariaceae species, and these traits are in agreement with the phylogenetic tree. Taken together, this demonstrates how novel methods for studying fossil pollen can facilitate the evolutionary investigation of living and extinct taxa, and the environments they represent.}, language = {en} } @article{ToumoulinTardifBecquetDonnadieuetal.2022, author = {Toumoulin, Agathe and Tardif-Becquet, Delphine and Donnadieu, Yannick and Licht, Alexis and Ladant, Jean-Baptiste and Kunzmann, Lutz and Dupont-Nivet, Guillaume}, title = {Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {18}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-18-341-2022}, pages = {341 -- 362}, year = {2022}, abstract = {At the junction of greenhouse and icehouse climate states, the Eocene-Oligocene Transition (EOT) is a key moment in Cenozoic climate history. While it is associated with severe extinctions and biodiversity turnovers on land, the role of terrestrial climate evolution remains poorly resolved, especially the associated changes in seasonality. Some paleobotanical and geochemical continental records in parts of the Northern Hemisphere suggest the EOT is associated with a marked cooling in winter, leading to the development of more pronounced seasons (i.e., an increase in the mean annual range of temperature, MATR). However, the MATR increase has been barely studied by climate models and large uncertainties remain on its origin, geographical extent and impact. In order to better understand and describe temperature seasonality changes between the middle Eocene and the early Oligocene, we use the Earth system model IPSL-CM5A2 and a set of simulations reconstructing the EOT through three major climate forcings: pCO(2) decrease (1120, 840 and 560 ppm), the Antarctic ice-sheet (AIS) formation and the associated sea-level decrease. Our simulations suggest that pCO(2) lowering alone is not sufficient to explain the seasonality evolution described by the data through the EOT but rather that the combined effects of pCO(2) , AIS formation and increased continentality provide the best data-model agreement.pCO(2) decrease induces a zonal pattern with alternating increasing and decreasing seasonality bands particularly strong in the northern high latitudes (up to 8 degrees C MATR increase) due to sea-ice and surface albedo feedback. Conversely, the onset of the AIS is responsible for a more constant surface albedo yearly, which leads to a strong decrease in seasonality in the southern midlatitudes to high latitudes (> 40 degrees S). Finally, continental areas that emerged due to the sea-level lowering cause the largest increase in seasonality and explain most of the global heterogeneity in MATR changes (1MATR) patterns. The Delta MATR patterns we reconstruct are generally consistent with the variability of the EOT biotic crisis intensity across the Northern Hemisphere and provide insights on their underlying mechanisms.}, language = {en} } @article{TardifBecquetFluteauDonnadieuetal.2020, author = {Tardif-Becquet, Delphine and Fluteau, Fr{\´e}d{\´e}ric and Donnadieu, Yannick and Le Hir, Guillaume and Ladant, Jean-Baptiste and Sepulchre, Pierre and Licht, Alexis and Poblete, Fernando and Dupont-Nivet, Guillaume}, title = {The origin of Asian monsoons}, series = {Climate of the Past}, volume = {16}, journal = {Climate of the Past}, number = {3}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1814-9332}, doi = {10.5194/cp-16-847-2020}, pages = {847 -- 865}, year = {2020}, abstract = {The Cenozoic inception and development of the Asian monsoons remain unclear and have generated much debate, as several hypotheses regarding circulation patterns at work in Asia during the Eocene have been proposed in the few last decades. These include (a) the existence of modern-like monsoons since the early Eocene; (b) that of a weak South Asian monsoon (SAM) and little to no East Asian monsoon (EAM); or (c) a prevalence of the Intertropical Convergence Zone (ITCZ) migrations, also referred to as Indonesian-Australian monsoon (I-AM). As SAM and EAM are supposed to have been triggered or enhanced primarily by Asian palaeogeographic changes, their possible inception in the very dynamic Eocene palaeogeographic context remains an open question, both in the modelling and field-based communities. We investigate here Eocene Asian climate conditions using the IPSL-CM5A2 (Sepulchre et al., 2019) earth system model and revised palaeogeographies. Our Eocene climate simulation yields atmospheric circulation patterns in Asia substantially different from modern conditions. A large high-pressure area is simulated over the Tethys ocean, which generates intense low tropospheric winds blowing southward along the western flank of the proto-Himalayan-Tibetan plateau (HTP) system. This low-level wind system blocks, to latitudes lower than 10 degrees N, the migration of humid and warm air masses coming from the Indian Ocean. This strongly contrasts with the modern SAM, during which equatorial air masses reach a latitude of 20-25 degrees N over India and southeastern China. Another specific feature of our Eocene simulation is the widespread subsidence taking place over northern India in the midtroposphere (around 5000 m), preventing deep convective updraught that would transport water vapour up to the condensation level. Both processes lead to the onset of a broad arid region located over northern India and over the HTP. More humid regions of high seasonality in precipitation encircle this arid area, due to the prevalence of the Intertropical Convergence Zone (ITCZ) migrations (or Indonesian-Australian monsoon, I-AM) rather than monsoons. Although the existence of this central arid region may partly result from the specifics of our simulation (model dependence and palaeogeographic uncertainties) and has yet to be confirmed by proxy records, most of the observational evidence for Eocene monsoons are located in the highly seasonal transition zone between the arid area and the more humid surroundings. We thus suggest that a zonal arid climate prevailed over Asia before the initiation of monsoons that most likely occurred following Eocene palaeogeographic changes. Our results also show that precipitation seasonality should be used with caution to infer the presence of a monsoonal circulation and that the collection of new data in this arid area is of paramount importance to allow the debate to move forward.}, language = {en} } @article{JaraMunozMelnickLietal.2022, author = {Jara-Mu{\~n}oz, Julius and Melnick, Daniel and Li, Shaoyang and Socquet, Anne and Cort{\´e}s-Aranda, Joaqu{\´i}n and Brill, Dominik and Strecker, Manfred R.}, title = {The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-022-30754-1}, pages = {13}, year = {2022}, abstract = {The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 +/- 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 +/- 0.2 ka recurrence time for Mw similar to 7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere.}, language = {en} } @article{HaugkJongejansMangelsdorfetal.2022, author = {Haugk, Charlotte and Jongejans, Loeka L. and Mangelsdorf, Kai and Fuchs, Matthias and Ogneva, Olga and Palmtag, Juri and Mollenhauer, Gesine and Mann, Paul J. and Overduin, P. Paul and Grosse, Guido and Sanders, Tina and Tuerena, Robyn E. and Schirrmeister, Lutz and Wetterich, Sebastian and Kizyakov, Alexander and Karger, Cornelia and Strauss, Jens}, title = {Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)}, series = {Biogeosciences}, volume = {19}, journal = {Biogeosciences}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-19-2079-2022}, pages = {2079 -- 2094}, year = {2022}, abstract = {Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits is still poorly quantified. We define the OM quality as the intrinsic potential for further transformation, decomposition and mineralisation. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecu- lar geochemical and carbon isotopic analyses of Late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last similar to 52 kyr. We showed that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt \%). The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal ka BP) and are overlaid by last glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7-0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of isoand anteiso-branched fatty acids (FAs) relative to mid- and long-chain (C >= 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C/N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease in HPFA values downwards along the profile probably indicates stronger OM decomposition in the oldest (MIS 3) deposits of the cliff. The characterisation of OM from eroding permafrost leads to a better assessment of the greenhouse gas potential of the OC released into river and nearshore waters in the future.}, language = {en} } @article{VoglimacciStephanopoliWendlederLantuitetal.2022, author = {Voglimacci-Stephanopoli, Jo{\"e}lle and Wendleder, Anna and Lantuit, Hugues and Langlois, Alexandre and Stettner, Samuel and Schmitt, Andreas and Dedieu, Jean-Pierre and Roth, Achim and Royer, Alain}, title = {Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation}, series = {Cryosphere}, volume = {16}, journal = {Cryosphere}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-2163-2022}, pages = {2163 -- 2181}, year = {2022}, abstract = {Changes in snowpack associated with climatic warming has drastic impacts on surface energy balance in the cryosphere. Yet, traditional monitoring techniques, such as punctual measurements in the field, do not cover the full snowpack spatial and temporal variability, which hampers efforts to upscale measurements to the global scale. This variability is one of the primary constraints in model development. In terms of spatial resolution, active microwaves (synthetic aperture radar - SAR) can address the issue and outperform methods based on passive microwaves. Thus, high-spatial-resolution monitoring of snow depth (SD) would allow for better parameterization of local processes that drive the spatial variability of snow. The overall objective of this study is to evaluate the potential of the TerraSAR-X (TSX) SAR sensor and the wave co-polar phase difference (CPD) method for characterizing snow cover at high spatial resolution. Consequently, we first (1) investigate SD and depth hoar fraction (DHF) variability between different vegetation classes in the Ice Creek catchment (Qikiqtaruk/Herschel Island, Yukon, Canada) using in situ measurements collected over the course of a field campaign in 2019; (2) evaluate linkages between snow characteristics and CPD distribution over the 2019 dataset; and (3) determine CPD seasonality considering meteorological data over the 2015-2019 period. SD could be extracted using the CPD when certain conditions are met. A high incidence angle (>30 circle) with a high topographic wetness index (TWI) (>7.0) showed correlation between SD and CPD (R2 up to 0.72). Further, future work should address a threshold of sensitivity to TWI and incidence angle to map snow depth in such environments and assess the potential of using interpolation tools to fill in gaps in SD information on drier vegetation types.}, language = {en} } @article{KayaDupontNivetFrielingetal.2022, author = {Kaya, Mustafa Y{\"u}cel and Dupont-Nivet, Guillaume and Frieling, Joost and Fioroni, Chiara and Rohrmann, Alexander and Alt{\i}ner, Sevin{\c{c}} {\"O}zkan and Vardar, Ezgi and Tanyas, Hakan and Mamtimin, Mehmut and Zhaojie, Guo}, title = {The Eurasian epicontinental sea was an important carbon sink during the Palaeocene-Eocene thermal maximum}, series = {Communications earth and environment}, volume = {3}, journal = {Communications earth and environment}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2662-4435}, doi = {10.1038/s43247-022-00451-4}, pages = {10}, year = {2022}, abstract = {The Palaeocene-Eocene Thermal Maximum (ca. 56 million years ago) offers a primary analogue for future global warming and carbon cycle recovery. Yet, where and how massive carbon emissions were mitigated during this climate warming event remains largely unknown. Here we show that organic carbon burial in the vast epicontinental seaways that extended over Eurasia provided a major carbon sink during the Palaeocene-Eocene Thermal Maximum. We coupled new and existing stratigraphic analyses to a detailed paleogeographic framework and using spatiotemporal interpolation calculated ca. 720-1300 Gt organic carbon excess burial, focused in the eastern parts of the Eurasian epicontinental seaways. A much larger amount (2160-3900 Gt C, and when accounting for the increase in inundated shelf area 7400-10300 Gt C) could have been sequestered in similar environments globally. With the disappearance of most epicontinental seas since the Oligocene-Miocene, an effective negative carbon cycle feedback also disappeared making the modern carbon cycle critically dependent on the slower silicate weathering feedback.}, language = {en} } @article{PalmerGregoryBaggeetal.2020, author = {Palmer, Matthew D. and Gregory, Jonathan and Bagge, Meike and Calvert, Daley and Hagedoorn, Jan Marius and Howard, Tom and Klemann, Volker and Lowe, Jason A. and Roberts, Chris and Slangen, Aimee B. A. and Spada, Giorgio}, title = {Exploring the drivers of global and local sea-level change over the 21st century and beyond}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1029/2019EF001413}, pages = {1 -- 25}, year = {2020}, abstract = {We present a new set of global and local sea-level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5-based sea-level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea-level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea-level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea-level change in the coming decades and the potential value of annual-to-decadal predictions of local sea-level change. Projections to 2300 show a substantial degree of committed sea-level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50\%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post-2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario.}, language = {en} } @article{NwosuRoeserYangetal.2021, author = {Nwosu, Ebuka Canisius and Roeser, Patricia Angelika and Yang, Sizhong and Ganzert, Lars and Dellwig, Olaf and Pinkerneil, Sylvia and Brauer, Achim and Dittmann, Elke and Wagner, Dirk and Liebner, Susanne}, title = {From water into sediment-tracing freshwater cyanobacteria via DNA analyses}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9081778}, pages = {20}, year = {2021}, abstract = {Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.}, language = {en} } @article{NwosuRoeserYangetal.2021, author = {Nwosu, Ebuka Canisius and Roeser, Patricia Angelika and Yang, Sizhong and Pinkerneil, Sylvia and Ganzert, Lars and Dittmann, Elke and Brauer, Achim and Wagner, Dirk and Liebner, Susanne}, title = {Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics}, series = {Frontiers in microbiology}, volume = {12}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2021.761259}, pages = {17}, year = {2021}, abstract = {Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes.}, language = {en} } @article{LichtKelsonBergeletal.2022, author = {Licht, Alexis and Kelson, Julia and Bergel, Shelly J. and Schauer, Andrew J. and Petersen, Sierra Victoria and Capirala, Ashika and Huntington, Katharine W. and Dupont-Nivet, Guillaume and Win, Zaw and Aung, Day Wa}, title = {Dynamics of pedogenic carbonate growth in the tropical domain of Myanmar}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2021GC009929}, pages = {15}, year = {2022}, abstract = {Pedogenic carbonate is widespread at mid latitudes where warm and dry conditions favor soil carbonate growth from spring to fall. The mechanisms and timing of pedogenic carbonate formation are more ambiguous in the tropical domain, where long periods of soil water saturation and high soil respiration enhance calcite dissolution. This paper provides stable carbon, oxygen and clumped isotope values from Quaternary and Miocene pedogenic carbonates in the tropical domain of Myanmar, in areas characterized by warm (>18°C) winters and annual rainfall up to 1,700 mm. We show that carbonate growth in Myanmar is delayed to the driest and coldest months of the year by sustained monsoonal rainfall from mid spring to late fall. The range of isotopic variability in Quaternary pedogenic carbonates can be solely explained by temporal changes of carbonate growth within the dry season, from winter to early spring. We propose that high soil moisture year-round in the tropical domain narrows carbonate growth to the driest months and makes it particularly sensitive to the seasonal distribution of rainfall. This sensitivity is also enabled by high winter temperatures, allowing carbonate growth to occur outside the warmest months of the year. This high sensitivity is expected to be more prominent in the geological record during times with higher temperatures and greater expansion of the tropical realm. Clumped isotope temperatures, δ13C and δ18O values of tropical pedogenic carbonates are impacted by changes of both rainfall seasonality and surface temperatures; this sensitivity can potentially be used to track past tropical rainfall distribution.}, language = {en} }