@article{RuszkiewiczEndigGueveretal.2023, author = {Ruszkiewicz, Joanna and Endig, Lisa and G{\"u}ver, Ebru and B{\"u}rkle, Alexander and Mangerich, Aswin}, title = {Life-cycle-dependent toxicities of mono- and bifunctional alkylating agents in the 3R-compliant model organism C. elegans}, series = {Cells : open access journal}, volume = {12}, journal = {Cells : open access journal}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells12232728}, pages = {16}, year = {2023}, abstract = {Caenorhabditis elegans (C. elegans) is gaining recognition and importance as an organismic model for toxicity testing in line with the 3Rs principle (replace, reduce, refine). In this study, we explored the use of C. elegans to examine the toxicities of alkylating sulphur mustard analogues, specifically the monofunctional agent 2-chloroethyl-ethyl sulphide (CEES) and the bifunctional, crosslinking agent mechlorethamine (HN2). We exposed wild-type worms at different life cycle stages (from larvae L1 to adulthood day 10) to CEES or HN2 and scored their viability 24 h later. The susceptibility of C. elegans to CEES and HN2 paralleled that of human cells, with HN2 exhibiting higher toxicity than CEES, reflected in LC50 values in the high µM to low mM range. Importantly, the effects were dependent on the worms' developmental stage as well as organismic age: the highest susceptibility was observed in L1, whereas the lowest was observed in L4 worms. In adult worms, susceptibility to alkylating agents increased with advanced age, especially to HN2. To examine reproductive effects, L4 worms were exposed to CEES and HN2, and both the offspring and the percentage of unhatched eggs were assessed. Moreover, germline apoptosis was assessed by using ced-1p::GFP (MD701) worms. In contrast to concentrations that elicited low toxicities to L4 worms, CEES and HN2 were highly toxic to germline cells, manifesting as increased germline apoptosis as well as reduced offspring number and percentage of eggs hatched. Again, HN2 exhibited stronger effects than CEES. Compound specificity was also evident in toxicities to dopaminergic neurons-HN2 exposure affected expression of dopamine transporter DAT-1 (strain BY200) at lower concentrations than CEES, suggesting a higher neurotoxic effect. Mechanistically, nicotinamide adenine dinucleotide (NAD+) has been linked to mustard agent toxicities. Therefore, the NAD+-dependent system was investigated in the response to CEES and HN2 treatment. Overall NAD+ levels in worm extracts were revealed to be largely resistant to mustard exposure except for high concentrations, which lowered the NAD+ levels in L4 worms 24 h post-treatment. Interestingly, however, mutant worms lacking components of NAD+-dependent pathways involved in genome maintenance, namely pme-2, parg-2, and sirt-2.1 showed a higher and compound-specific susceptibility, indicating an active role of NAD+ in genotoxic stress response. In conclusion, the present results demonstrate that C. elegans represents an attractive model to study the toxicology of alkylating agents, which supports its use in mechanistic as well as intervention studies with major strength in the possibility to analyze toxicities at different life cycle stages.}, language = {en} } @article{HeydenNatho2022, author = {Heyden, Janika and Natho, Stephanie}, title = {Assessing floodplain management in Germany - a case study on nationwide research and actions}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su141710610}, pages = {18}, year = {2022}, abstract = {After a long history of floodplain degradation and substantial losses of inundation areas over the last decades, a rethinking of floodplain management has taken place in Germany. Floodplains are now acknowledged as important areas for both biodiversity and society. This transformation has been significantly supported by nationwide research activities. A systematic assessment of the current floodplain management is still lacking. We therefore developed a scheme to assess floodplain management through the steps of identification, analysis, implementation, and evaluation. Reviewing the data and literature on nationwide floodplain-related research and activities, we defined key elements of floodplain management for Germany. We concluded that research activities already follow a strategic nationwide approach of identifying and analyzing floodplains. Progress in implementation is slow, however, and potentials are far from being reached. Nevertheless, new and unique initiatives enable Germany to stay on the long-term path of giving rivers more space and improving floodplain conditions.}, language = {en} } @article{Seyedhosseini2022, author = {Seyedhosseini, Mehran}, title = {A variant of Roe algebras for spaces with cylindrical ends with applications in relative higher index theory}, series = {Journal of noncommutative geometry}, volume = {16}, journal = {Journal of noncommutative geometry}, number = {2}, publisher = {European Mathematical Society}, address = {Zurich}, issn = {1661-6952}, doi = {10.4171/JNCG/457}, pages = {595 -- 624}, year = {2022}, abstract = {In this paper, we define a variant of Roe algebras for spaces with cylindrical ends and use this to study questions regarding existence and classification of metrics of positive scalar curvature on such manifolds which are collared on the cylindrical end. We discuss how our constructions are related to relative higher index theory as developed by Chang, Weinberger, and Yu and use this relationship to define higher rho-invariants for positive scalar curvature metrics on manifolds with boundary. This paves the way for the classification of these metrics. Finally, we use the machinery developed here to give a concise proof of a result of Schick and the author, which relates the relative higher index with indices defined in the presence of positive scalar curvature on the boundary.}, language = {en} } @article{HeideNetzebandtAhrensetal.2023, author = {Heide, Judith and Netzebandt, Jonka and Ahrens, Stine and Br{\"u}sch, Julia and Saalfrank, Teresa and Schmitz-Antonischki, Dorit}, title = {Improving lexical retrieval with LingoTalk}, series = {Frontiers in communication}, volume = {8}, journal = {Frontiers in communication}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2297-900X}, doi = {10.3389/fcomm.2023.1210193}, pages = {16}, year = {2023}, abstract = {Introduction LingoTalk is a German speech-language app designed to enhance lexical retrieval in individuals with aphasia. It incorporates automatic speech recognition (ASR) to provide therapist-independent feedback. The execution and effectiveness of a self-administered intervention with LingoTalk was explored in a case series study. Methods Three individuals with chronic aphasia participated in a highly individualized, supervised self-administered intervention lasting 3 weeks. The LingoTalk app closely monitored the frequency, intensity and progress of the intervention. Treatment efficacy was assessed using a multiple baseline design, examining both item-specific treatment effects and generalization to untreated items, an untreated task, and spontaneous speech. Results All participants successfully completed the intervention with LingoTalk, although one participant was not able to use the ASR feature. None of the participants fully adhered to the treatment protocol. All participants demonstrated significant and sustained improvement in the naming of practiced items, although there was limited evidence of generalization. Additionally, there was a slight reduction in word-finding difficulties during spontaneous speech. Discussion This small-scale study indicates that self-administered intervention with LingoTalk can improve oral naming of treated items. Thus, it has the potential to complement face-to-face speech-language therapy, such as within in a "flipped speech room" approach. The choice of feedback mode is discussed. Transparent progress monitoring of the intervention appears to positively influence patients' motivation.}, language = {en} } @article{RosenblumPikovsky2023, author = {Rosenblum, Michael and Pikovsky, Arkady}, title = {Inferring connectivity of an oscillatory network via the phase dynamics reconstruction}, series = {Frontiers in network physiology}, volume = {3}, journal = {Frontiers in network physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2674-0109}, doi = {10.3389/fnetp.2023.1298228}, pages = {10}, year = {2023}, abstract = {We review an approach for reconstructing oscillatory networks' undirected and directed connectivity from data. The technique relies on inferring the phase dynamics model. The central assumption is that we observe the outputs of all network nodes. We distinguish between two cases. In the first one, the observed signals represent smooth oscillations, while in the second one, the data are pulse-like and can be viewed as point processes. For the first case, we discuss estimating the true phase from a scalar signal, exploiting the protophase-to-phase transformation. With the phases at hand, pairwise and triplet synchronization indices can characterize the undirected connectivity. Next, we demonstrate how to infer the general form of the coupling functions for two or three oscillators and how to use these functions to quantify the directional links. We proceed with a different treatment of networks with more than three nodes. We discuss the difference between the structural and effective phase connectivity that emerges due to high-order terms in the coupling functions. For the second case of point-process data, we use the instants of spikes to infer the phase dynamics model in the Winfree form directly. This way, we obtain the network's coupling matrix in the first approximation in the coupling strength.}, language = {en} } @article{KonakvandeWaterDoeringetal.2023, author = {Konak, Orhan and van de Water, Robin and D{\"o}ring, Valentin and Fiedler, Tobias and Liebe, Lucas and Masopust, Leander and Postnov, Kirill and Sauerwald, Franz and Treykorn, Felix and Wischmann, Alexander and Gjoreski, Hristijan and Luštrek, Mitja and Arnrich, Bert}, title = {HARE}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s23239571}, pages = {23}, year = {2023}, abstract = {Sensor-based human activity recognition is becoming ever more prevalent. The increasing importance of distinguishing human movements, particularly in healthcare, coincides with the advent of increasingly compact sensors. A complex sequence of individual steps currently characterizes the activity recognition pipeline. It involves separate data collection, preparation, and processing steps, resulting in a heterogeneous and fragmented process. To address these challenges, we present a comprehensive framework, HARE, which seamlessly integrates all necessary steps. HARE offers synchronized data collection and labeling, integrated pose estimation for data anonymization, a multimodal classification approach, and a novel method for determining optimal sensor placement to enhance classification results. Additionally, our framework incorporates real-time activity recognition with on-device model adaptation capabilities. To validate the effectiveness of our framework, we conducted extensive evaluations using diverse datasets, including our own collected dataset focusing on nursing activities. Our results show that HARE's multimodal and on-device trained model outperforms conventional single-modal and offline variants. Furthermore, our vision-based approach for optimal sensor placement yields comparable results to the trained model. Our work advances the field of sensor-based human activity recognition by introducing a comprehensive framework that streamlines data collection and classification while offering a novel method for determining optimal sensor placement.}, language = {en} } @article{RoeslerGasparatosHermanussenetal.2022, author = {R{\"o}sler, Antonia and Gasparatos, Nikolaos and Hermanussen, Michael and Scheffler, Christiane}, title = {Practicability and user-friendliness of height measurements by proof of concept APP using Augmented Reality, in 22 healthy children}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.2.48}, pages = {9}, year = {2022}, abstract = {Background: Child growth is a dynamic process. When measured at short intervals, children's growth shows characteristic patterns that can be of great importance for clinical purposes. Objective: To study whether measuring height on a daily basis using an APP is practicable and user-friendly. Methods: Recruitment took place via Snowball Sampling. Thirteen out of 14 contacted families signed up for a study period of 12 weeks with altogether 22 healthy children aged 3 to 13 years (response rate 93\%). The study started with a visit to the family home for the setup of the measurement site, conventional height measuring and initial training of the new measurement process. Follow-up appointments were made at four, eight and 12 weeks. The children's height was measured at daily intervals at their family homes over a period of three months. Results: The parents altogether recorded 1704 height measurements and meticulously documented practicability and problems when using the device. A 93\% response rate in recruitment was achieved by maintaining a high motivation within the families. Contact with the principal investigator was permanently available, including open communication, personal training and attendance during the appointments at the family homes. Conclusion: Measuring height by photographic display is interesting for children and parents and can be used for height measurements at home. A positive response rate of 13 out of 14 families with altogether 22 children highlights feasible recruitment and the high convenience and user-friendliness of daily APP-supported height measurements. Daily APP measurements appear to be a promising new tool for longitudinal growth studies.}, language = {en} } @article{KaylerPremkeGessleretal.2019, author = {Kayler, Zachary E. and Premke, Katrin and Gessler, Arthur and Gessner, Mark O. and Griebler, Christian and Hilt, Sabine and Klemedtsson, Leif and Kuzyakov, Yakov and Reichstein, Markus and Siemens, Jan and Totsche, Kai-Uwe and Tranvik, Lars and Wagner, Annekatrin and Weitere, Markus and Grossart, Hans-Peter}, title = {Integrating Aquatic and Terrestrial Perspectives to Improve Insights Into Organic Matter Cycling at the Landscape Scale}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00127}, pages = {14}, year = {2019}, abstract = {Across a landscape, aquatic-terrestrial interfaces within and between ecosystems are hotspots of organic matter (OM) mineralization. These interfaces are characterized by sharp spatio-temporal changes in environmental conditions, which affect OM properties and thus control OM mineralization and other transformation processes. Consequently, the extent of OM movement at and across aquatic-terrestrial interfaces is crucial in determining OM turnover and carbon (C) cycling at the landscape scale. Here, we propose expanding current concepts in aquatic and terrestrial ecosystem sciences to comprehensively evaluate OM turnover at the landscape scale. We focus on three main concepts toward explaining OM turnover at the landscape scale: the landscape spatiotemporal context, OM turnover described by priming and ecological stoichiometry, and anthropogenic effects as a disruptor of natural OM transfer magnitudes and pathways. A conceptual framework is introduced that allows for discussing the disparities in spatial and temporal scales of OM transfer, changes in environmental conditions, ecosystem connectivity, and microbial-substrate interactions. The potential relevance of priming effects in both terrestrial and aquatic systems is addressed. For terrestrial systems, we hypothesize that the interplay between the influx of OM, its corresponding elemental composition, and the elemental demand of the microbial communities may alleviate spatial and metabolic thresholds. In comparison, substrate level OM dynamics may be substantially different in aquatic systems due to matrix effects that accentuate the role of abiotic conditions, substrate quality, and microbial community dynamics. We highlight the disproportionate impact anthropogenic activities can have on OM cycling across the landscape. This includes reversing natural OM flows through the landscape, disrupting ecosystem connectivity, and nutrient additions that cascade across the landscape. This knowledge is crucial for a better understanding of OM cycling in a landscape context, in particular since terrestrial and aquatic compartments may respond differently to the ongoing changes in climate, land use, and other anthropogenic interferences.}, language = {en} } @article{LundgreenJaspersTravingetal.2019, author = {Lundgreen, Regitze B. C. and Jaspers, Cornelia and Traving, Sachia J. and Ayala, Daniel J. and Lombard, Fabien and Grossart, Hans-Peter and Nielsen, Torkel G. and Munk, Peter and Riemann, Lasse}, title = {Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-45146-7}, pages = {12}, year = {2019}, abstract = {Marine snow aggregates represent heterogeneous agglomerates of dead and living organic matter. Composition is decisive for their sinking rates, and thereby for carbon flux to the deep sea. For oligotrophic oceans, information on aggregate composition is particularly sparse. To address this, the taxonomic composition of aggregates collected from the subtropical and oligotrophic Sargasso Sea (Atlantic Ocean) was characterized by 16S and 18S rRNA gene sequencing. Taxonomy assignment was aided by a collection of the contemporary plankton community consisting of 75 morphologically and genetically identified plankton specimens. The diverse rRNA gene reads of marine snow aggregates, not considering Trichodesmium puffs, were dominated by copepods (52\%), cnidarians (21\%), radiolarians (11\%), and alveolates (8\%), with sporadic contributions by cyanobacteria, suggesting a different aggregate composition than in eutrophic regions. Composition linked significantly with sampling location but not to any measured environmental parameters or plankton biomass composition. Nevertheless, indicator and network analyses identified key roles of a few rare taxa. This points to complex regulation of aggregate composition, conceivably affected by the environment and plankton characteristics. The extent to which this has implications for particle densities, and consequently for sinking rates and carbon sequestration in oligotrophic waters, needs further interrogation.}, language = {en} } @article{NumbergerGanzertZoccaratoetal.2019, author = {Numberger, Daniela and Ganzert, Lars and Zoccarato, Luca and M{\"u}hldorfer, Kristin and Sauer, Sascha and Grossart, Hans-Peter and Greenwood, Alex D.}, title = {Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-46015-z}, pages = {14}, year = {2019}, abstract = {Wastewater treatment is crucial to environmental hygiene in urban environments. However, wastewater treatment plants (WWTPs) collect chemicals, organic matter, and microorganisms including pathogens and multi-resistant bacteria from various sources which may be potentially released into the environment via WWTP effluent. To better understand microbial dynamics in WWTPs, we characterized and compared the bacterial community of the inflow and effluent of a WWTP in Berlin, Germany using full-length 16S rRNA gene sequences, which allowed for species level determination in many cases and generally resolved bacterial taxa. Significantly distinct bacterial communities were identified in the wastewater inflow and effluent samples. Dominant operational taxonomic units (OTUs) varied both temporally and spatially. Disease associated bacterial groups were efficiently reduced in their relative abundance from the effluent by the WWTP treatment process, except for Legionella and Leptospira species which demonstrated an increase in relative proportion from inflow to effluent. This indicates that WWTPs, while effective against enteric bacteria, may enrich and release other potentially pathogenic bacteria into the environment. The taxonomic resolution of full-length 16S rRNA genes allows for improved characterization of potential pathogenic taxa and other harmful bacteria which is required to reliably assess health risk.}, language = {en} }