@article{UeckerdtFrielerLangeetal.2019, author = {Ueckerdt, Falko and Frieler, Katja and Lange, Stefan and Wenz, Leonie and Luderer, Gunnar and Levermann, Anders}, title = {The economically optimal warming limit of the planet}, series = {Earth system dynamics}, volume = {10}, journal = {Earth system dynamics}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-10-741-2019}, pages = {741 -- 763}, year = {2019}, abstract = {Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy-economy-climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to "well below 2 degrees" is thus also an economically optimal goal given above assumptions on adaptation and damage persistence.}, language = {en} } @article{KuehnGiangrisostomiJayetal.2019, author = {K{\"u}hn, Danilo and Giangrisostomi, Erika and Jay, Raphael Martin and Sorgenfrei, Nomi and F{\"o}hlisch, Alexander}, title = {The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab2f5c}, pages = {12}, year = {2019}, abstract = {Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources.}, language = {en} } @article{SerranoMunozMishurovaThiedeetal.2020, author = {Serrano-Munoz, Itziar and Mishurova, Tatiana and Thiede, Tobias and Sprengel, Maximilian and Kromm, Arne and Nadammal, Naresh and Nolze, Gert and Saliwan-Neumann, Romeo and Evans, Alexander and Bruno, Giovanni}, title = {The residual stress in as-built laser powder bed fusion IN718 alloy as a consequence of the scanning strategy induced microstructure}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-71112-9}, pages = {15}, year = {2020}, abstract = {The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2 degrees) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS.}, language = {en} } @article{ReeseLevermannAlbrechtetal.2020, author = {Reese, Ronja and Levermann, Anders and Albrecht, Torsten and Seroussi, Helene and Winkelmann, Ricarda}, title = {The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3097-2020}, pages = {3097 -- 3110}, year = {2020}, abstract = {Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects - initMIP, LARMIP-2 and ISMIP6 - conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1:4 to 4:0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9:1 to 35:8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5\% to 50 \%. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections.}, language = {en} } @article{RomanowskyHandorfJaiseretal.2019, author = {Romanowsky, Erik and Handorf, D{\"o}rthe and Jaiser, Ralf and Wohltmann, Ingo and Dorn, Wolfgang and Ukita, Jinro and Cohen, Judah and Dethloff, Klaus and Rex, Markus}, title = {The role of stratospheric ozone for Arctic-midlatitude linkages}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-43823-1}, pages = {7}, year = {2019}, abstract = {Arctic warming was more pronounced than warming in midlatitudes in the last decades making this region a hotspot of climate change. Associated with this, a rapid decline of sea-ice extent and a decrease of its thickness has been observed. Sea-ice retreat allows for an increased transport of heat and momentum from the ocean up to the tropo- and stratosphere by enhanced upward propagation of planetary-scale atmospheric waves. In the upper atmosphere, these waves deposit the momentum transported, disturbing the stratospheric polar vortex, which can lead to a breakdown of this circulation with the potential to also significantly impact the troposphere in mid- to late-winter and early spring. Therefore, an accurate representation of stratospheric processes in climate models is necessary to improve the understanding of the impact of retreating sea ice on the atmospheric circulation. By modeling the atmospheric response to a prescribed decline in Arctic sea ice, we show that including interactive stratospheric ozone chemistry in atmospheric model calculations leads to an improvement in tropo-stratospheric interactions compared to simulations without interactive chemistry. This suggests that stratospheric ozone chemistry is important for the understanding of sea ice related impacts on atmospheric dynamics.}, language = {en} } @article{PerottoniLimbergAmaranteetal.2022, author = {Perottoni, H{\´e}lio D. and Limberg, Guilherme and Amarante, Jo{\~a}o A. S. and Rossi, Silvia and Queiroz, Anna B. A. and Santucci, Rafael M. and P{\´e}rez-Villegas, Angeles and Chiappini, Cristina}, title = {The unmixed debris of Gaia-Sausage/Enceladus in the form of a pair of halo stellar overdensities}, series = {Astrophysical journal letters}, volume = {936}, journal = {Astrophysical journal letters}, number = {1}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2041-8213}, doi = {10.3847/2041-8213/ac88d6}, pages = {7}, year = {2022}, abstract = {In the first billion years after its formation, the galaxy underwent several mergers with dwarf satellites of various masses. The debris of Gaia-Sausage/Enceladus (GSE), the galaxy responsible for the last significant merger of the Milky Way, dominates the inner halo and has been suggested to be the progenitor of both the Hercules-Aquila Cloud (HAC) and Virgo Overdensity (VOD). We combine SEGUE, APOGEE, Gaia, and StarHorse distances to characterize the chemodynamical properties and verify the link between HAC, VOD, and GSE. We find that the orbital eccentricity distributions of the stellar overdensities and GSE are comparable. We also find that they have similar, strongly peaked, metallicity distribution functions, reinforcing the hypothesis of common origin. Furthermore, we show that HAC and VOD are indistinguishable from the prototypical GSE population within all chemical-abundance spaces analyzed. All these evidences combined provide a clear demonstration that the GSE merger is the main progenitor of the stellar populations found within these halo overdensities.}, language = {en} } @article{AbiusoHolubecAndersetal.2022, author = {Abiuso, Paolo and Holubec, Viktor and Anders, Janet and Ye, Zhuolin and Cerisola, Federico and Perarnau-Llobet, Marti}, title = {Thermodynamics and optimal protocols of multidimensional quadratic Brownian systems}, series = {Journal of physics communications}, volume = {6}, journal = {Journal of physics communications}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2399-6528}, doi = {10.1088/2399-6528/ac72f8}, pages = {15}, year = {2022}, abstract = {We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how these results can be used to analyze cases in which the experimental control over the system is partial.}, language = {en} } @article{BornDeckerHaverkampetal.2021, author = {Born, Artur and Decker, Regis and Haverkamp, Robert and Ruotsalainen, Kari and Bauer, Karl and Pietzsch, Annette and F{\"o}hlisch, Alexander and B{\"u}chner, Robby}, title = {Thresholding of the Elliott-Yafet spin-flip scattering in multi-sublattice magnets by the respective exchange energies}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-81177-9}, pages = {7}, year = {2021}, abstract = {How different microscopic mechanisms of ultrafast spin dynamics coexist and interplay is not only relevant for the development of spintronics but also for the thorough description of physical systems out-of-equilibrium. In pure crystalline ferromagnets, one of the main microscopic mechanism of spin relaxation is the electron-phonon (el-ph) driven spin-flip, or Elliott-Yafet, scattering. Unexpectedly, recent experiments with ferro- and ferrimagnetic alloys have shown different dynamics for the different sublattices. These distinct sublattice dynamics are contradictory to the Elliott-Yafet scenario. In order to rationalize this discrepancy, it has been proposed that the intra- and intersublattice exchange interaction energies must be considered in the microscopic demagnetization mechanism, too. Here, using a temperature-dependent x-ray emission spectroscopy (XES) method, we address experimentally the element specific el-ph angular momentum transfer rates, responsible for the spin-flips in the respective (sub)lattices of Fe20Ni80, Fe50Ni50 and pure nickel single crystals. We establish how the deduced rate evolution with the temperature is linked to the exchange coupling constants reported for different alloy stoichiometries and how sublattice exchange energies threshold the related el-ph spin-flip channels. Thus, these results evidence that the Elliott-Yafet spin-flip scattering, thresholded by sublattice exchange energies, is the relevant microscopic process to describe sublattice dynamics in alloys and elemental magnetic systems.}, language = {en} } @article{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Communications Physics}, volume = {5}, journal = {Communications Physics}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-022-01079-8}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @article{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and Reppert, Alexander von and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Photoacoustics}, volume = {30}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100463}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @article{Pikovskij2021, author = {Pikovskij, Arkadij}, title = {Transition to synchrony in chiral active particles}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/abdadb}, pages = {8}, year = {2021}, abstract = {I study deterministic dynamics of chiral active particles in two dimensions. Particles are considered as discs interacting with elastic repulsive forces. An ensemble of particles, started from random initial conditions, demonstrates chaotic collisions resulting in their normal diffusion. This chaos is transient, as rather abruptly a synchronous collisionless state establishes. The life time of chaos grows exponentially with the number of particles. External forcing (periodic or chaotic) is shown to facilitate the synchronization transition.}, language = {en} } @article{PetreskaPejovSandevetal.2022, author = {Petreska, Irina and Pejov, Ljupco and Sandev, Trifce and Kocarev, Ljupčo and Metzler, Ralf}, title = {Tuning of the dielectric relaxation and complex susceptibility in a system of polar molecules: a generalised model based on rotational diffusion with resetting}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {2}, publisher = {MDPI AG, Fractal Fract Editorial Office}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6020088}, pages = {23}, year = {2022}, abstract = {The application of the fractional calculus in the mathematical modelling of relaxation processes in complex heterogeneous media has attracted a considerable amount of interest lately. The reason for this is the successful implementation of fractional stochastic and kinetic equations in the studies of non-Debye relaxation. In this work, we consider the rotational diffusion equation with a generalised memory kernel in the context of dielectric relaxation processes in a medium composed of polar molecules. We give an overview of existing models on non-exponential relaxation and introduce an exponential resetting dynamic in the corresponding process. The autocorrelation function and complex susceptibility are analysed in detail. We show that stochastic resetting leads to a saturation of the autocorrelation function to a constant value, in contrast to the case without resetting, for which it decays to zero. The behaviour of the autocorrelation function, as well as the complex susceptibility in the presence of resetting, confirms that the dielectric relaxation dynamics can be tuned by an appropriate choice of the resetting rate. The presented results are general and flexible, and they will be of interest for the theoretical description of non-trivial relaxation dynamics in heterogeneous systems composed of polar molecules.}, language = {en} } @article{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/aba390}, pages = {17}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @article{SposiniGrebenkovMetzleretal.2020, author = {Sposini, Vittoria and Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb and Seno, Flavio}, title = {Universal spectral features of different classes of random-diffusivity processes}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, number = {6}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab9200}, pages = {26}, year = {2020}, abstract = {Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations.}, language = {en} } @article{RitschelCherstvyMetzler2021, author = {Ritschel, Stefan and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Universality of delay-time averages for financial time series}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/ac2220}, pages = {30}, year = {2021}, abstract = {We analyze historical data of stock-market prices for multiple financial indices using the concept of delay-time averaging for the financial time series (FTS). The region of validity of our recent theoretical predictions [Cherstvy A G et al 2017 New J. Phys. 19 063045] for the standard and delayed time-averaged mean-squared 'displacements' (TAMSDs) of the historical FTS is extended to all lag times. As the first novel element, we perform extensive computer simulations of the stochastic differential equation describing geometric Brownian motion (GBM) which demonstrate a quantitative agreement with the analytical long-term price-evolution predictions in terms of the delayed TAMSD (for all stock-market indices in crisis-free times). Secondly, we present a robust procedure of determination of the model parameters of GBM via fitting the features of the price-evolution dynamics in the FTS for stocks and cryptocurrencies. The employed concept of single-trajectory-based time averaging can serve as a predictive tool (proxy) for a mathematically based assessment and rationalization of probabilistic trends in the evolution of stock-market prices.}, language = {en} } @article{WiebelerVollbrechtNeubaetal.2021, author = {Wiebeler, Christian and Vollbrecht, Joachim and Neuba, Adam and Kitzerow, Heinz and Schumacher, Stefan}, title = {Unraveling the electrochemical and spectroscopic properties of neutral and negatively charged perylene tetraethylesters}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-95551-0}, pages = {11}, year = {2021}, abstract = {A detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree-Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.}, language = {en} } @article{VilkAghionAvgaretal.2022, author = {Vilk, Ohad and Aghion, Erez and Avgar, Tal and Beta, Carsten and Nagel, Oliver and Sabri, Adal and Sarfati, Raphael and Schwartz, Daniel K. and Weiß, Matthias and Krapf, Diego and Nathan, Ran and Metzler, Ralf and Assaf, Michael}, title = {Unravelling the origins of anomalous diffusion}, series = {Physical review research / American Physical Society}, volume = {4}, journal = {Physical review research / American Physical Society}, number = {3}, publisher = {American Physical Society}, address = {College Park, MD}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033055}, pages = {16}, year = {2022}, abstract = {Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations ("Joseph effect"), fat-tailed probability density of increments ("Noah effect"), and nonstationarity ("Moses effect"). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology.}, language = {en} } @article{KurthsAgarwalShuklaetal.2019, author = {Kurths, J{\"u}rgen and Agarwal, Ankit and Shukla, Roopam and Marwan, Norbert and Maheswaran, Rathinasamy and Caesar, Levke and Krishnan, Raghavan and Merz, Bruno}, title = {Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-251-2019}, pages = {251 -- 266}, year = {2019}, abstract = {A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Ni{\~n}o-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.}, language = {en} } @article{MientusNowakWulffetal.2023, author = {Mientus, Lukas and Nowak, Anna and Wulff, Peter and Borowski, Andreas}, title = {Unterrichtsanalyse und Reflexion}, series = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, journal = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-63200}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-632005}, pages = {445 -- 452}, year = {2023}, abstract = {Schulpraktische Phasen stellen eine bedeutende praxisnahe Lerngelegenheit im Lehramtsstudium dar, da sie Raum f{\"u}r umfangreiche Reflexionen der eigenen Lernerfahrung bieten. Das im Studium erworbene theoretisch-formale Wissen steht hierbei dem praktischen Wissen und K{\"o}nnen gegen{\"u}ber. Mit der professionellen Entwicklung im Referendariat, besonders im Kompetenzbereich des Unterrichtens, kann geschlussfolgert werden, dass sich eine Reflexion {\"u}ber eher fachliche Aspekte unter den Studierenden im Referendariat auf eine Reflexion {\"u}ber eher {\"u}berfachliche und p{\"a}dagogische Aspekte weitet. Infolge der Analyse von N = 55 schriftlichen Fremdreflexionen von angehenden Physiklehrkr{\"a}ften aus Studium und Referendariat konnte diese Hypothese f{\"u}r den Bereich der Unterrichtsanalyse und -reflexion unterst{\"u}tzt werden. Weiter wurde aus der Videovignette ein Workshopangebot f{\"u}r Lehrkr{\"a}fte der zweiten und dritten Phase der Lehrkr{\"a}ftebildung entwickelt, erprobt und evaluiert.}, language = {de} } @article{MetjeLeverMayeretal.2020, author = {Metje, Jan and Lever, Fabiano and Mayer, Dennis and Squibb, Richard James and Robinson, Matthew Scott and Niebuhr, Mario and Feifel, Raimund and D{\"u}sterer, Stefan and G{\"u}hr, Markus}, title = {URSA-PQ}, series = {Applied Sciences}, volume = {10}, journal = {Applied Sciences}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app10217882}, pages = {13}, year = {2020}, abstract = {We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for 'Ultraschnelle R{\"o}ntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen', Engl. 'ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems') instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments' capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup.}, language = {en} } @article{KontroBuschhueter2020, author = {Kontro, Inkeri and Buschh{\"u}ter, David}, title = {Validity of Colorado Learning Attitudes about Science Survey for a high-achieving, Finnish population}, series = {Physical review. Physics education research}, volume = {16}, journal = {Physical review. Physics education research}, number = {2}, publisher = {American Physical Society}, address = {College Park, MD}, issn = {2469-9896}, doi = {10.1103/PhysRevPhysEducRes.16.020104}, pages = {11}, year = {2020}, abstract = {The Colorado Learning Attitudes about Science Survey (CLASS) is an instrument which is widely used in physics education to characterize students' attitudes toward physics and learning physics and compare them with those of experts. While CLASS has been extensively validated for use in the context of higher education institutions in the United States, there has been less information about its use with European students. We have studied the structural, content, and substantive aspects of validity of CLASS by first doing a confirmatory factor analysis of N = 642 sets of student answers from the University of Helsinki, Finland. The students represented a culturally and demographically different subset of university physics students than in previous studies. The confirmatory factor analysis used a 3-factor, 15-item factor structure as a starting point and the resulting factor structure was similar to the original. Just minor modifications were needed for fit parameters to be in the acceptable range. We explored the differences by student interviews and consultation of experts. With the exception of one item, they supported the new 14-item, 3-factor structure. The results show that the interpretations made from CLASS results are mostly transferable, and CLASS remains a useful instrument for a wide variety of populations.}, language = {en} } @article{SchickEckertPontiusetal.2016, author = {Schick, Daniel and Eckert, Sebastian and Pontius, Niko and Mitzner, Rolf and F{\"o}hlisch, Alexander and Holldack, Karsten and Sorgenfrei, Nomi}, title = {Versatile soft X-ray-optical cross-correlator for ultrafast applications}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4964296}, pages = {054304-1 -- 054304-8}, year = {2016}, abstract = {We present an X-ray-optical cross-correlator for the soft (> 150 eV) up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50\% total X-ray reflectivity and transient signal changes of more than 20\%. (C) 2016 Author(s).}, language = {en} } @article{AbdallaAdamAharonianetal.2020, author = {Abdalla, Hassan E. and Adam, Remi and Aharonian, Felix A. and Benkhali, Faical Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, Masanori and Arcaro, C and Armand, Catherine and Armstrong, T. and Egberts, Kathrin}, title = {Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance}, series = {Monthly Notices of the Royal Astronomical Society}, volume = {494}, journal = {Monthly Notices of the Royal Astronomical Society}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, pages = {13}, year = {2020}, abstract = {We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.}, language = {en} } @article{MiddelanisWillnerOttoetal.2021, author = {Middelanis, Robin and Willner, Sven N. and Otto, Christian and Kuhla, Kilian and Quante, Lennart and Levermann, Anders}, title = {Wave-like global economic ripple response to Hurricane Sandy}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac39c0}, pages = {11}, year = {2021}, abstract = {Tropical cyclones range among the costliest disasters on Earth. Their economic repercussions along the supply and trade network also affect remote economies that are not directly affected. We here simulate possible global repercussions on consumption for the example case of Hurricane Sandy in the US (2012) using the shock-propagation model Acclimate. The modeled shock yields a global three-phase ripple: an initial production demand reduction and associated consumption price decrease, followed by a supply shortage with increasing prices, and finally a recovery phase. Regions with strong trade relations to the US experience strong magnitudes of the ripple. A dominating demand reduction or supply shortage leads to overall consumption gains or losses of a region, respectively. While finding these repercussions in historic data is challenging due to strong volatility of economic interactions, numerical models like ours can help to identify them by approaching the problem from an exploratory angle, isolating the effect of interest. For this, our model simulates the economic interactions of over 7000 regional economic sectors, interlinked through about 1.8 million trade relations. Under global warming, the wave-like structures of the economic response to major hurricanes like the one simulated here are likely to intensify and potentially overlap with other weather extremes.}, language = {en} } @article{MuenchLaepple2018, author = {M{\"u}nch, Thomas and Laepple, Thomas}, title = {What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores?}, series = {Climate of the past : CP}, volume = {14}, journal = {Climate of the past : CP}, number = {12}, publisher = {Copernicus Gesellschaft mbH}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-14-2053-2018}, pages = {2053 -- 2070}, year = {2018}, abstract = {Ice-core-based records of isotopic composition are a proxy for past temperatures and can thus provide information on polar climate variability over a large range of timescales. However, individual isotope records are affected by a multitude of processes that may mask the true temperature variability. The relative magnitude of climate and non-climate contributions is expected to vary as a function of timescale, and thus it is crucial to determine those temporal scales on which the actual signal dominates the noise. At present, there are no reliable estimates of this timescale dependence of the signal-to-noise ratio (SNR). Here, we present a simple method that applies spectral analyses to stable-isotope data from multiple cores to estimate the SNR, and the signal and noise variability, as a function of timescale. The method builds on separating the contributions from a common signal and from local variations and includes a correction for the effects of diffusion and time uncertainty. We apply our approach to firn-core arrays from Dronning Maud Land (DML) in East Antarctica and from the West Antarctic Ice Sheet (WAIS). For DML and decadal to multi-centennial timescales, we find an increase in the SNR by nearly 1 order of magnitude (similar to 0.2 at decadal and similar to 1.0 at multi-centennial scales). The estimated spectrum of climate variability also shows increasing variability towards longer timescales, contrary to what is traditionally inferred from single records in this region. In contrast, the inferred variability spectrum for WAIS stays close to constant over decadal to centennial timescales, and the results even suggest a decrease in SNR over this range of timescales. We speculate that these differences between DML and WAIS are related to differences in the spatial and temporal scales of the isotope signal, highlighting the potentially more homogeneous atmospheric conditions on the Antarctic Plateau in contrast to the marine-influenced conditions on WAIS. In general, our approach provides a methodological basis for separating local proxy variability from coherent climate variations, which is applicable to a large set of palaeoclimate records.}, language = {en} } @article{KloseWunderlingWinkelmannetal.2021, author = {Klose, Ann Kristin and Wunderling, Nico and Winkelmann, Ricarda and Donges, Jonathan}, title = {What do we mean, 'tipping cascade'?}, series = {Environmental research letters : ERL}, volume = {16}, journal = {Environmental research letters : ERL}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac3955}, pages = {11}, year = {2021}, abstract = {Based on suggested interactions of potential tipping elements in the Earth's climate and in ecological systems, tipping cascades as possible dynamics are increasingly discussed and studied. The activation of such tipping cascades would impose a considerable risk for human societies and biosphere integrity. However, there are ambiguities in the description of tipping cascades within the literature so far. Here we illustrate how different patterns of multiple tipping dynamics emerge from a very simple coupling of two previously studied idealized tipping elements. In particular, we distinguish between a two phase cascade, a domino cascade and a joint cascade. A mitigation of an unfolding two phase cascade may be possible and common early warning indicators are sensitive to upcoming critical transitions to a certain degree. In contrast, a domino cascade may hardly be stopped once initiated and critical slowing down-based indicators fail to indicate tipping of the following element. These different potentials for intervention and anticipation across the distinct patterns of multiple tipping dynamics should be seen as a call to be more precise in future analyses of cascading dynamics arising from tipping element interactions in the Earth system.}, language = {en} } @article{HaasShpritsAllisonetal.2022, author = {Haas, Bernhard and Shprits, Yuri and Allison, Hayley and Wutzig, Michael and Wang, Dedong}, title = {Which parameter controls ring current electron dynamics}, series = {Frontiers in astronomy and space sciences}, volume = {9}, journal = {Frontiers in astronomy and space sciences}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-987X}, doi = {10.3389/fspas.2022.911002}, pages = {11}, year = {2022}, abstract = {Predicting the electron population of Earth's ring current during geomagnetic storms still remains a challenging task. In this work, we investigate the sensitivity of 10 keV ring current electrons to different driving processes, parameterised by the Kp index, during several moderate and intense storms. Results are validated against measurements from the Van Allen Probes satellites. Perturbing the Kp index allows us to identify the most dominant processes for moderate and intense storms respectively. We find that during moderate storms (Kp < 6) the drift velocities mostly control the behaviour of low energy electrons, while loss from wave-particle interactions is the most critical parameter for quantifying the evolution of intense storms (Kp > 6). Perturbations of the Kp index used to drive the boundary conditions at GEO and set the plasmapause location only show a minimal effect on simulation results over a limited L range. It is further shown that the flux at L \& SIM; 3 is more sensitive to changes in the Kp index compared to higher L shells, making it a good proxy for validating the source-loss balance of a ring current model.}, language = {en} } @article{BetaGovYochelis2020, author = {Beta, Carsten and Gov, Nir S. and Yochelis, Arik}, title = {Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves}, series = {Cells}, volume = {9}, journal = {Cells}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells9061533}, pages = {18}, year = {2020}, abstract = {During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves.}, language = {en} }