@article{TofeldeBufeTurowski2022, author = {Tofelde, Stefanie and Bufe, Aaron and Turowski, Jens M.}, title = {Hillslope Sediment Supply Limits Alluvial Valley Width}, series = {AGU Advances}, journal = {AGU Advances}, publisher = {American Geophysical Union (AGU); Wiley}, address = {Hoboken, New Jersey, USA}, issn = {2576-604X}, doi = {10.1029/2021AV000641}, pages = {20}, year = {2022}, abstract = {River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90\%-99\% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography.}, language = {en} } @article{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Acta Psychologica}, volume = {231}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103791}, pages = {1 -- 17}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @article{LindnerMoellerHildebrandtetal.2022, author = {Lindner, Nadja and Moeller, Korbinian and Hildebrandt, Frauke and Hasselhorn, Marcus and Lonnemann, Jan}, title = {Children's use of egocentric reference frames in spatial language is related to their numerical magnitude understanding}, series = {Frontiers in Psychology}, journal = {Frontiers in Psychology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.943191}, pages = {1 -- 13}, year = {2022}, abstract = {Numerical magnitude information is assumed to be spatially represented in the form of a mental number line defined with respect to a body-centred, egocentric frame of reference. In this context, spatial language skills such as mastery of verbal descriptions of spatial position (e.g., in front of, behind, to the right/left) have been proposed to be relevant for grasping spatial relations between numerical magnitudes on the mental number line. We examined 4- to 5-year-old's spatial language skills in tasks that allow responses in egocentric and allocentric frames of reference, as well as their relative understanding of numerical magnitude (assessed by a number word comparison task). In addition, we evaluated influences of children's absolute understanding of numerical magnitude assessed by their number word comprehension (montring different numbers using their fingers) and of their knowledge on numerical sequences (determining predecessors and successors as well as identifying missing dice patterns of a series). Results indicated that when considering responses that corresponded to the egocentric perspective, children's spatial language was associated significantly with their relative numerical magnitude understanding, even after controlling for covariates, such as children's SES, mental rotation skills, and also absolute magnitude understanding or knowledge on numerical sequences. This suggests that the use of egocentric reference frames in spatial language may facilitate spatial representation of numbers along a mental number line and thus seem important for preschoolers' relative understanding of numerical magnitude.}, language = {en} } @book{BenderDreiackEngelsetal.2022, author = {Bender, Carsten and Dreiack, Stefanie and Engels, Victoria and Fisseler, Bj{\"o}rn and Gregory, Luisa and Gross, Monika and Kaffenberger, Jens and Kost{\"a}dt, Peter and Meyer zu Bexten, Erdmuthe and Rustemeier, Linda and Schwarz, Thorsten and Tannert, Benjamin and Velasquez, Estefania Cepeda and Weber, Gerhard}, title = {Leitfaden zur Digitalen Barrierefreiheit im Hochschulkontext}, series = {Arbeitspapier / Hochschulforum Digitalisierung (HFD) ; 66}, volume = {5}, journal = {Arbeitspapier / Hochschulforum Digitalisierung (HFD) ; 66}, publisher = {Stifterverband f{\"u}r die Deutsche Wissenschaft}, address = {Berlin}, issn = {2365-7081}, doi = {10.5445/IR/1000153177}, pages = {43}, year = {2022}, language = {de} } @article{BertelmannMittermaierKostaedt2022, author = {Bertelmann, Roland and Mittermaier, Bernhard and Kost{\"a}dt, Peter}, title = {Transform2Open}, publisher = {Helmholtz Open Science Office}, address = {Potsdam}, doi = {10.48440/os.helmholtz.054}, pages = {22}, year = {2022}, language = {de} } @article{RezoriBuchallikWarschburger2022, author = {Rezori, Roman Enzio von and Buchallik, Friederike and Warschburger, Petra}, title = {Validation of the German Benefit Finding Scale for youth with chronic conditions}, series = {Child and adolescent psychiatry and mental health}, volume = {16}, journal = {Child and adolescent psychiatry and mental health}, publisher = {Biomed Central}, address = {London}, issn = {1753-2000}, doi = {10.1186/s13034-021-00438-7}, pages = {1 -- 8}, year = {2022}, abstract = {Background Benefit finding, defined as perceiving positive life changes resulting from adversity and negative life stressors, gains growing attention in the context of chronic illness. The study aimed at examining the psychometric properties of the Benefit Finding Scale for Children (BFSC) in a sample of German youth facing chronic conditions. Methods A sample of adolescents with various chronic conditions (N = 304; 12 - 21years) completed the 10-item BFSC along with measures of intra- and interpersonal resources, coping strategies, and health-related quality of life (hrQoL). The total sample was randomly divided into two subsamples for conducting exploratory and confirmatory factor analyses (EFA/CFA). Results EFA revealed that the BFSC scores had a one-dimensional factor structure. CFA verified the one-dimensional factor structure with an acceptable fit. The BFSC exhibited acceptable internal consistency (α = 0.87 - 0.88) and construct validity. In line with our hypotheses, benefit finding was positively correlated with optimism, self-esteem, self-efficacy, sense of coherence, and support seeking. There were no correlations with avoidance, wishful thinking, emotional reaction, and hrQoL. Sex differences in benefit finding were not consistent across subsamples. Benefit finding was also positively associated with age, disease severity, and social status. Conclusions The BFSC is a psychometrically sound instrument to assess benefit finding in adolescents with chronic illness and may facilitate further research on positive adaptation processes in adolescents, irrespective of their specific diagnosis.}, language = {en} } @article{ReegStriglJeltsch2022, author = {Reeg, Jette and Strigl, Lea and Jeltsch, Florian}, title = {Agricultural buffer zone thresholds to safeguard functional bee diversity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, edition = {3}, publisher = {Wiley Online Library}, address = {Hoboken, New Jersey, USA}, issn = {2045-7758}, doi = {10.1002/ece3.8748}, pages = {1 -- 17}, year = {2022}, abstract = {Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25\% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75\% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.}, language = {en} } @article{KaunathEccard2022, author = {Kaunath, Vera and Eccard, Jana}, title = {Light Attraction in Carabid Beetles}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.751288}, pages = {10}, year = {2022}, abstract = {Artificial light at night (ALAN) is altering the behaviour of nocturnal animals in a manifold of ways. Nocturnal invertebrates are particularly affected, due to their fatal attraction to ALAN. This selective pressure has the potential to reduce the strength of the flight-to-light response in insects, as shown recently in a moth species. Here we investigated light attraction of ground beetles (Coleoptera: Carabidae).We compared among animals (three genera) from a highly light polluted (HLP) grassland in the centre of Berlin and animals collected at a low-polluted area in a Dark Sky Reserve (DSR), captured using odour bait. In an arena setting tested at night time, HLP beetles (n = 75 across all genera) showed a reduced attraction towards ALAN. Tested during daytime, HLP beetles were less active in an open field test (measured as latency to start moving), compared to DSR (n = 143). However, we did not observe a reduced attraction towards ALAN within the species most common at both sides, Calathus fuscipes (HLP = 37, DSR = 118 individuals) indicating that not all species may be equally affected by ALAN. Reduced attraction to ALAN in urban beetles may either be a result of phenotypic selection in each generation removing HLP individuals that are attracted to light, or an indication for ongoing evolutionary differentiation among city and rural populations in their light response. Reduced attraction to light sources may directly enhance survival and reproductive success of urban individuals. However, decrease in mobility may negatively influence dispersal, reproduction and foraging success, highlighting the selective pressure that light pollution may have on fitness, by shaping and modifying the behaviour of insects.}, language = {en} } @article{KaiserBrenne2022, author = {Kaiser, Michaela and Brenne, Andreas}, title = {{\"A}sthetik - Normativit{\"a}t - Diversit{\"a}t}, series = {Individuelle F{\"o}rderung - Heterogenit{\"a}t und Handlungsperspektiven in der Schule}, journal = {Individuelle F{\"o}rderung - Heterogenit{\"a}t und Handlungsperspektiven in der Schule}, publisher = {Waxmann}, address = {Stuttgart}, isbn = {978-3-8385-5919-3}, doi = {10.36198/9783838559193}, pages = {249 -- 259}, year = {2022}, language = {de} } @article{LiebeDordevicKaufmannetal.2022, author = {Liebe, Thomas and Dordevic, Milos and Kaufmann, J{\"o}rn and Avetisyan, Araks and Skalej, Martin and M{\"u}ller, Notger Germar}, title = {Investigation of the functional pathogenesis of mild cognitive impairment by localisation-based locus coeruleus resting-state fMRI}, series = {Human Brain Mapping}, volume = {43}, journal = {Human Brain Mapping}, edition = {18}, publisher = {Wiley}, address = {New York, NY, USA}, issn = {1097-0193}, doi = {10.1002/hbm.26039}, pages = {5630 -- 5642}, year = {2022}, abstract = {Dementia as one of the most prevalent diseases urges for a better understanding of the central mechanisms responsible for clinical symptoms, and necessitates improvement of actual diagnostic capabilities. The brainstem nucleus locus coeruleus (LC) is a promising target for early diagnosis because of its early structural alterations and its relationship to the functional disturbances in the patients. In this study, we applied our improved method of localisation-based LC resting-state fMRI to investigate the differences in central sensory signal processing when comparing functional connectivity (fc) of a patient group with mild cognitive impairment (MCI, n = 28) and an age-matched healthy control group (n = 29). MCI and control participants could be differentiated in their Mini-Mental-State-Examination (MMSE) scores (p < .001) and LC intensity ratio (p = .010). In the fMRI, LC fc to anterior cingulate cortex (FDR p < .001) and left anterior insula (FDR p = .012) was elevated, and LC fc to right temporoparietal junction (rTPJ, FDR p = .012) and posterior cingulate cortex (PCC, FDR p = .021) was decreased in the patient group. Importantly, LC to rTPJ connectivity was also positively correlated to MMSE scores in MCI patients (p = .017). Furthermore, we found a hyperactivation of the left-insula salience network in the MCI patients. Our results and our proposed disease model shed new light on the functional pathogenesis of MCI by directing to attentional network disturbances, which could aid new therapeutic strategies and provide a marker for diagnosis and prediction of disease progression.}, language = {en} } @article{HauffeRathAgyapongetal.2022, author = {Hauffe, Robert and Rath, Michaela and Agyapong, Wilson and Jonas, Wenke and Vogel, Heike and Schulz, Tim Julius and Schwarz, Maria and Kipp, Anna Patricia and Bl{\"u}her, Matthias and Kleinridders, Andr{\´e}}, title = {Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling}, series = {Antioxidants}, volume = {11}, journal = {Antioxidants}, edition = {5}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-3921}, doi = {10.3390/antiox11050862}, pages = {1 -- 16}, year = {2022}, abstract = {The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.}, language = {en} } @article{KayhanMatthesMarriottHaresignetal.2022, author = {Kayhan, Ezgi and Matthes, Daniel and Marriott Haresign, Ira and B{\´a}nki, Anna and Michel, Christine and Langeloh, Miriam and Wass, Sam and Hoehl, Stefanie}, title = {DEEP: A dual EEG pipeline for developmental hyperscanning studies}, series = {Developmental Cognitive Neuroscience}, volume = {54}, journal = {Developmental Cognitive Neuroscience}, publisher = {Elsevier}, address = {Amsterdam, Niederlande}, issn = {1878-9307}, doi = {10.1016/j.dcn.2022.101104}, pages = {1 -- 11}, year = {2022}, abstract = {Cutting-edge hyperscanning methods led to a paradigm shift in social neuroscience. It allowed researchers to measure dynamic mutual alignment of neural processes between two or more individuals in naturalistic contexts. The ever-growing interest in hyperscanning research calls for the development of transparent and validated data analysis methods to further advance the field. We have developed and tested a dual electroencephalography (EEG) analysis pipeline, namely DEEP. Following the preprocessing of the data, DEEP allows users to calculate Phase Locking Values (PLVs) and cross-frequency PLVs as indices of inter-brain phase alignment of dyads as well as time-frequency responses and EEG power for each participant. The pipeline also includes scripts to control for spurious correlations. Our goal is to contribute to open and reproducible science practices by making DEEP publicly available together with an example mother-infant EEG hyperscanning dataset.}, language = {en} } @article{TiedemannIobbiNivolLeimkuehler2022, author = {Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes}, series = {Molecules}, volume = {27}, journal = {Molecules}, edition = {9}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1420-3049}, doi = {10.3390/molecules27092993}, pages = {1 -- 15}, year = {2022}, abstract = {The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.}, language = {en} } @article{WeithoffBell2022, author = {Weithoff, Guntram and Bell, Elanor Margaret}, title = {Complex Trophic Interactions in an Acidophilic Microbial Community}, series = {Microorganisms}, volume = {10}, journal = {Microorganisms}, edition = {7}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-2607}, doi = {10.3390/microorganisms10071340}, pages = {1 -- 10}, year = {2022}, abstract = {Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community.}, language = {en} } @article{PrasseIversenLienhardetal.2022, author = {Prasse, Paul and Iversen, Pascal and Lienhard, Matthias and Thedinga, Kristina and Herwig, Ralf and Scheffer, Tobias}, title = {Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction}, series = {MDPI}, volume = {14}, journal = {MDPI}, edition = {16}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2072-6694}, doi = {10.3390/cancers14163950}, pages = {1 -- 14}, year = {2022}, abstract = {Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models' accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases.}, language = {en} } @article{MiticGrafeBatsiosetal.2022, author = {Mitic, Kristina and Grafe, Marianne and Batsios, Petros and Meyer, Irene}, title = {Partial Disassembly of the Nuclear Pore Complex Proteins during Semi-Closed Mitosis in Dictyostelium discoideum}, series = {Cells}, volume = {11}, journal = {Cells}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells11030407}, pages = {14}, year = {2022}, abstract = {Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis.}, language = {en} } @article{MattisBeckmannReinetal.2022, author = {Mattis, Toni and Beckmann, Tom and Rein, Patrick and Hirschfeld, Robert}, title = {First-class concepts}, series = {Journal of object technology : JOT / ETH Z{\"u}rich, Department of Computer Science}, volume = {21}, journal = {Journal of object technology : JOT / ETH Z{\"u}rich, Department of Computer Science}, number = {2}, publisher = {ETH Z{\"u}rich, Department of Computer Science}, address = {Z{\"u}rich}, issn = {1660-1769}, doi = {10.5381/jot.2022.21.2.a6}, pages = {1 -- 15}, year = {2022}, abstract = {Ideally, programs are partitioned into independently maintainable and understandable modules. As a system grows, its architecture gradually loses the capability to accommodate new concepts in a modular way. While refactoring is expensive and not always possible, and the programming language might lack dedicated primary language constructs to express certain cross-cutting concerns, programmers are still able to explain and delineate convoluted concepts through secondary means: code comments, use of whitespace and arrangement of code, documentation, or communicating tacit knowledge.
Secondary constructs are easy to change and provide high flexibility in communicating cross-cutting concerns and other concepts among programmers. However, such secondary constructs usually have no reified representation that can be explored and manipulated as first-class entities through the programming environment.
In this exploratory work, we discuss novel ways to express a wide range of concepts, including cross-cutting concerns, patterns, and lifecycle artifacts independently of the dominant decomposition imposed by an existing architecture. We propose the representation of concepts as first-class objects inside the programming environment that retain the capability to change as easily as code comments. We explore new tools that allow programmers to view, navigate, and change programs based on conceptual perspectives. In a small case study, we demonstrate how such views can be created and how the programming experience changes from draining programmers' attention by stretching it across multiple modules toward focusing it on cohesively presented concepts. Our designs are geared toward facilitating multiple secondary perspectives on a system to co-exist in symbiosis with the original architecture, hence making it easier to explore, understand, and explain complex contexts and narratives that are hard or impossible to express using primary modularity constructs.}, language = {en} } @article{DordevicHoelzerRussoetal.2022, author = {Dordevic, Milos and H{\"o}lzer, Sonja and Russo, Augusta and Garc{\´i}a Alanis, Jos{\´e} Carlos and M{\"u}ller, Notger Germar}, title = {The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting—A cTBS Study}, series = {Life}, volume = {12}, journal = {Life}, edition = {8}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2075-1729}, doi = {10.3390/life12081239}, pages = {1 -- 13}, year = {2022}, abstract = {As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding.}, language = {en} } @article{MuellerNedielkovArndt2022, author = {M{\"u}ller, Marik and Nedielkov, Ruslan and Arndt, Katja M.}, title = {Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol}, series = {Antibiotics}, volume = {11}, journal = {Antibiotics}, number = {4}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2079-6382}, doi = {10.3390/antibiotics11040443}, pages = {1 -- 18}, year = {2022}, abstract = {Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.}, language = {en} } @article{Miklashevsky2022, author = {Miklashevsky, Alex}, title = {Catch the star! Spatial information activates the manual motor system}, series = {PLoS ONE}, journal = {PLoS ONE}, publisher = {PLOS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0262510}, pages = {1 -- 30}, year = {2022}, abstract = {Previous research demonstrated a close bidirectional relationship between spatial attention and the manual motor system. However, it is unclear whether an explicit hand movement is necessary for this relationship to appear. A novel method with high temporal resolution-bimanual grip force registration-sheds light on this issue. Participants held two grip force sensors while being presented with lateralized stimuli (exogenous attentional shifts, Experiment 1), left- or right-pointing central arrows (endogenous attentional shifts, Experiment 2), or the words "left" or "right" (endogenous attentional shifts, Experiment 3). There was an early interaction between the presentation side or arrow direction and grip force: lateralized objects and central arrows led to a larger increase of the ipsilateral force and a smaller increase of the contralateral force. Surprisingly, words led to the opposite pattern: larger force increase in the contralateral hand and smaller force increase in the ipsilateral hand. The effect was stronger and appeared earlier for lateralized objects (60 ms after stimulus presentation) than for arrows (100 ms) or words (250 ms). Thus, processing visuospatial information automatically activates the manual motor system, but the timing and direction of this effect vary depending on the type of stimulus.}, language = {en} }