@article{HammamiChaabeneKharratetal.2021, author = {Hammami, Raouf and Chaabene, Helmi and Kharrat, Fatma and Werfelli, Hanen and Duncan, Michael and Rebai, Haithem and Granacher, Urs}, title = {Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {13}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-021-00249-5}, pages = {8}, year = {2021}, abstract = {Background Earlier studies have shown that balance training (BT) has the potential to induce performance enhancements in selected components of physical fitness (i.e., balance, muscle strength, power, speed). While there is ample evidence on the long-term effects of BT on components of physical fitness in youth, less is known on the short-term or acute effects of single BT sessions on selected measures of physical fitness. Objective To examine the acute effects of different balance exercise types on balance, change-of-direction (CoD) speed, and jump performance in youth female volleyball players. Methods Eleven female players aged 14 years participated in this study. Three types of balance exercises (i.e., anterior, posterolateral, rotational type) were conducted in randomized order. For each exercise, 3 sets including 5 repetitions were performed. Before and after the performance of the balance exercises, participants were tested for their static balance (center of pressure surface area [CoP SA] and velocity [CoP V]) on foam and firm surfaces, CoD speed (T-Half test), and vertical jump height (countermovement jump [CMJ] height). A 3 (condition: anterior, mediolateral, rotational balance exercise type) × 2 (time: pre, post) analysis of variance was computed with repeated measures on time. Results Findings showed no significant condition × time interactions for all outcome measures (p > 0.05). However, there were small main effects of time for CoP SA on firm and foam surfaces (both d = 0.38; all p < 0.05) with no effect for CoP V on both surface conditions (p > 0.05). For CoD speed, findings showed a large main effect of time (d = 0.91; p < 0.001). However, for CMJ height, no main effect of time was observed (p > 0.05). Conclusions Overall, our results indicated small-to-large changes in balance and CoD speed performances but not in CMJ height in youth female volleyball players, regardless of the balance exercise type. Accordingly, it is recommended to regularly integrate balance exercises before the performance of sport-specific training to optimize performance development in youth female volleyball players.}, language = {en} } @article{PrieskeChaabeneMoranetal.2022, author = {Prieske, Olaf and Chaabene, Helmi and Moran, Jason and Saeterbakken, Atle Hole}, title = {Adaptations to Advanced Resistance Training Strategies in Youth and Adult Athletes}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {13}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.888118}, pages = {3}, year = {2022}, language = {en} } @article{SchaeferDechBittmann2021, author = {Schaefer, Laura and Dech, Silas and Bittmann, Frank}, title = {Adaptive force and emotionally related imaginations}, series = {Heliyon}, volume = {7}, journal = {Heliyon}, number = {8}, publisher = {Elsevier}, address = {London}, issn = {2405-8440}, doi = {10.1016/j.heliyon.2021.e07827}, pages = {13}, year = {2021}, abstract = {The link between emotions and motor control has been discussed for years. The measurement of the Adaptive Force (AF) provides the possibility to get insights into the adaptive control of the neuromuscular system in reaction to external forces. It was hypothesized that the holding isometric AF is especially vulnerable to disturbing inputs. Here, the behavior of the AF under the influence of positive (tasty) vs. negative (disgusting) food imaginations was investigated. The AF was examined in n = 12 cases using an objectified manual muscle test of the hip flexors, elbow flexors or pectoralis major muscle, performed by one of two experienced testers while the participants imagined their most tasty or most disgusting food. The reaction force and the limb position were measured by a handheld device. While the slope of force rises and the maximal AF did not differ significantly between tasty and disgusting imaginations (p > 0.05), the maximal isometric AF was significantly lower and the AF at the onset of oscillations was significantly higher under disgusting vs. tasty imaginations (both p = 0.001). A proper length tension control of muscles seems to be a crucial functional parameter of the neuromuscular system which can be impaired instantaneously by emotionally related negative imaginations. This might be a potential approach to evaluate somatic reactions to emotions.}, language = {en} } @article{HeinzKieferSmolkaetal.2020, author = {Heinz, Andreas and Kiefer, Falk and Smolka, Michael N. and Endrass, Tanja and Beste, Christian and Beck, Anne and Liu, Shuyan and Genauck, Alexander and Romund, Lydia and Rapp, Michael Armin and Tost, Heike and Spanagel, Rainer}, title = {Addiction research consortium: losing and regaining control over drug intake (ReCoDe) - from trajectories to mechanisms and interventions}, series = {Addiction Biology}, volume = {25}, journal = {Addiction Biology}, number = {2}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {6}, year = {2020}, abstract = {One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake.}, language = {en} } @misc{RandallJuengelRimannetal.2018, author = {Randall, Matthew J. and J{\"u}ngel, Astrid and Rimann, Markus and Wuertz-Kozak, Karin}, title = {Advances in the biofabrication of 3D Skin in vitro}, series = {Frontiers in Bioengineeringand Biotechnology}, volume = {6}, journal = {Frontiers in Bioengineeringand Biotechnology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2018.00154}, pages = {12}, year = {2018}, abstract = {The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation.}, language = {en} } @article{MenzeMuellerMuelleretal.2022, author = {Menze, Inga and M{\"u}ller, Patrick and M{\"u}ller, Notger G. and Schmicker, Marlen}, title = {Age-related cognitive effects of the COVID-19 pandemic restrictions and associated mental health changes in Germans}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-11283-9}, pages = {16}, year = {2022}, abstract = {Restrictive means to reduce the spread of the COVID-19 pandemic have not only imposed broad challenges on mental health but might also affect cognitive health. Here we asked how restriction-related changes influence cognitive performance and how age, perceived loneliness, depressiveness and affectedness by restrictions contribute to these effects. 51 Germans completed three assessments of an online based study during the first lockdown in Germany (April 2020), a month later, and during the beginning of the second lockdown (November 2020). Participants completed nine online cognitive tasks of the MyBrainTraining and online questionnaires about their perceived strain and impact on lifestyle factors by the situation (affectedness), perceived loneliness, depressiveness as well as subjective cognitive performance. The results suggested a possible negative impact of depressiveness and affectedness on objective cognitive performance within the course of the lockdown. The younger the participants, the more pronounced these effects were. Loneliness and depressiveness moreover contributed to a worse evaluation of subjective cognition. In addition, especially younger individuals reported increased distress. As important educational and social input has partly been scarce during this pandemic and mental health problems have increased, future research should also assess cognitive long-term consequences.}, language = {en} } @article{JararnezhadgeroMamashliGranacher2021, author = {Jararnezhadgero, AmirAli and Mamashli, Elaheh and Granacher, Urs}, title = {An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.654755}, pages = {1 -- 15}, year = {2021}, abstract = {Background: The prevalence of diabetes worldwide is predicted to increase from 2.8\% in 2000 to 4.4\% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45-65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40-55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001-0.037; d = 0.56-1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001-0.044; d = 0.54-0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics.}, language = {en} } @article{BittmannDechSchaefer2023, author = {Bittmann, Frank and Dech, Silas and Schaefer, Laura}, title = {Another way to confuse motor control}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3425}, doi = {10.3390/brainsci13071105}, pages = {20}, year = {2023}, abstract = {Sensorimotor control can be impaired by slacked muscle spindles. This was shown for reflex responses and, recently, also for muscular stability in the sense of Adaptive Force (AF). The slack in muscle spindles was generated by contracting the lengthened muscle followed by passive shortening. AF was suggested to specifically reflect sensorimotor control since it requires tension-length control in adaptation to an increasing load. This study investigated AF parameters in reaction to another, manually performed slack procedure in a preselected sample (n = 13). The AF of 11 elbow and 12 hip flexors was assessed by an objectified manual muscle test (MMT) using a handheld device. Maximal isometric AF was significantly reduced after manual spindle technique vs. regular MMT. Muscle lengthening started at 64.93 \& PLUSMN; 12.46\% of maximal voluntary isometric contraction (MVIC). During regular MMT, muscle length could be maintained stable until 92.53 \& PLUSMN; 10.12\% of MVIC. Hence, muscular stability measured by AF was impaired after spindle manipulation. Force oscillations arose at a significantly lower level for regular vs. spindle. This supports the assumption that they are a prerequisite for stable adaptation. Reduced muscular stability in reaction to slack procedures is considered physiological since sensory information is misled. It is proposed to use slack procedures to test the functionality of the neuromuscular system, which is relevant for clinical practice.}, language = {en} } @article{KoenigBlockBeckeretal.2018, author = {K{\"o}nig, Johanna and Block, Andrea and Becker, Mathias and Fenske, Kristin and Hertel, Johannes and Van der Auwera, Sandra and Zymara, Kathleen and Voelzke, Henry and Freyberger, Harald Juergen and Grabe, Hans Joergen}, title = {Assessment of subjective emotional valence and long-lasting impact of life events}, series = {BMC Psychiatry}, volume = {18}, journal = {BMC Psychiatry}, publisher = {BioMed Central}, address = {London}, issn = {1471-244X}, doi = {10.1186/s12888-018-1649-3}, pages = {12}, year = {2018}, abstract = {Background: Life events (LEs) are associated with future physical and mental health. They are crucial for understanding the pathways to mental disorders as well as the interactions with biological parameters. However, deeper insight is needed into the complex interplay between the type of LE, its subjective evaluation and accompanying factors such as social support. The "Stralsund Life Event List" (SEL) was developed to facilitate this research. Methods: The SEL is a standardized interview that assesses the time of occurrence and frequency of 81 LEs, their subjective emotional valence, the perceived social support during the LE experience and the impact of past LEs on present life. Data from 2265 subjects from the general population-based cohort study "Study of Health in Pomerania" (SHIP) were analysed. Based on the mean emotional valence ratings of the whole sample, LEs were categorized as "positive" or "negative". For verification, the SEL was related to lifetime major depressive disorder (MDD; Munich Composite International Diagnostic Interview), childhood trauma (Childhood Trauma Questionnaire), resilience (Resilience Scale) and subjective health (SF-12 Health Survey). Conclusions: The SEL is a valid instrument that enables the analysis of the number and frequency of LEs, their emotional valence, perceived social support and current impact on life on a global score and on an individual item level. Thus, we can recommend its use in research settings that require the assessment and analysis of the relationship between the occurrence and subjective evaluation of LEs as well as the complex balance between distressing and stabilizing life experiences.}, language = {en} } @article{DechBittmannSchaefer2021, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Assessment of the adaptive force of Elbow extensors in healthy subjects quantified by a novel pneumatically driven measurement system with considerations of its quality criteria}, series = {Diagnostics : open access journal}, volume = {11}, journal = {Diagnostics : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2075-4418}, doi = {10.3390/diagnostics11060923}, pages = {23}, year = {2021}, abstract = {Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31-1.98 Nm (0.61\%-5.47\%, p = 0.175-0.552), the standard errors of measurements (SEM) were 1.29-5.68 Nm (2.53\%-15.70\%) and the ICCs(3,1) = 0.896-0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85-0.98). The M and Max of AFisomax were significantly lower (6.12-14.93 Nm; p ≤ 0.001-0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95\%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4\%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.}, language = {en} }