@book{MeinelJohnWollowski2022, author = {Meinel, Christoph and John, Catrina and Wollowski, Tobias}, title = {Die HPI Schul-Cloud - Von der Vision zur digitale Infrastruktur f{\"u}r deutsche Schulen}, number = {144}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-526-2}, issn = {1613-5652}, doi = {10.25932/publishup-53586}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535860}, publisher = {Universit{\"a}t Potsdam}, pages = {v, 77}, year = {2022}, abstract = {Digitale Medien sind aus unserem Alltag kaum noch wegzudenken. Einer der zentralsten Bereiche f{\"u}r unsere Gesellschaft, die schulische Bildung, darf hier nicht hintanstehen. Wann immer der Einsatz digital unterst{\"u}tzter Tools p{\"a}dagogisch sinnvoll ist, muss dieser in einem sicheren Rahmen erm{\"o}glicht werden k{\"o}nnen. Die HPI Schul-Cloud ist dieser Vision gefolgt, die vom Nationalen IT-Gipfel 2016 angestoßen wurde und dem Bericht vorangestellt ist - gefolgt. Sie hat sich in den vergangenen f{\"u}nf Jahren vom Pilotprojekt zur unverzichtbaren IT-Infrastruktur f{\"u}r zahlreiche Schulen entwickelt. W{\"a}hrend der Corona-Pandemie hat sie f{\"u}r viele Tausend Schulen wichtige Unterst{\"u}tzung bei der Umsetzung ihres Bildungsauftrags geboten. Das Ziel, eine zukunftssichere und datenschutzkonforme Infrastruktur zur digitalen Unterst{\"u}tzung des Unterrichts zur Verf{\"u}gung zu stellen, hat sie damit mehr als erreicht. Aktuell greifen rund 1,4 Millionen Lehrkr{\"a}fte und Sch{\"u}lerinnen und Sch{\"u}ler bundesweit und an den deutschen Auslandsschulen auf die HPI Schul-Cloud zu.}, language = {de} } @inproceedings{JacqminOezdemirFellKurbanetal.2021, author = {Jacqmin, Julien and {\"O}zdemir, Paker Doğu and Fell Kurban, Caroline and Tun{\c{c}} Pekkan, Zelha and Koskinen, Johanna and Suonp{\"a}{\"a}, Maija and Seng, Cheyvuth and Carlon, May Kristine Jonson and Gayed, John Maurice and Cross, Jeffrey S. and Langseth, Inger and Jacobsen, Dan Yngve and Haugsbakken, Halvdan and Bethge, Joseph and Serth, Sebastian and Staubitz, Thomas and Wuttke, Tobias and Nordemann, Oliver and Das, Partha-Pratim and Meinel, Christoph and Ponce, Eva and Srinath, Sindhu and Allegue, Laura and Perach, Shai and Alexandron, Giora and Corti, Paola and Baudo, Valeria and Turr{\´o}, Carlos and Moura Santos, Ana and Nilsson, Charlotta and Maldonado-Mahauad, Jorge and Valdiviezo, Javier and Carvallo, Juan Pablo and Samaniego-Erazo, Nicolay and Poce, Antonella and Re, Maria Rosaria and Valente, Mara and Karp Gershon, Sa'ar and Ruip{\´e}rez-Valiente, Jos{\´e} A. and Despujol, Ignacio and Busquets, Jaime and Kerr, John and Lorenz, Anja and Sch{\"o}n, Sandra and Ebner, Martin and Wittke, Andreas and Beirne, Elaine and Nic Giolla Mhich{\´i}l, Mair{\´e}ad and Brown, Mark and Mac Lochlainn, Conch{\´u}r and Topali, Paraskevi and Chounta, Irene-Angelica and Ortega-Arranz, Alejandro and Villagr{\´a}-Sobrino, Sara L. and Mart{\´i}nez-Mon{\´e}s, Alejandra and Blackwell, Virginia Katherine and Wiltrout, Mary Ellen and Rami Gaddem, Mohamed and Hern{\´a}ndez Reyes, C{\´e}sar Augusto and Nagahama, Toru and Buchem, Ilona and Okatan, Ebru and Khalil, Mohammad and Casiraghi, Daniela and Sancassani, Susanna and Brambilla, Federica and Mihaescu, Vlad and Andone, Diana and Vasiu, Radu and Şahin, Muhittin and Egloffstein, Marc and Bothe, Max and Rohloff, Tobias and Schenk, Nathanael and Schwerer, Florian and Ifenthaler, Dirk and Hense, Julia and Bernd, Mike}, title = {EMOOCs 2021}, editor = {Meinel, Christoph and Staubitz, Thomas and Schweiger, Stefanie and Friedl, Christian and Kiers, Janine and Ebner, Martin and Lorenz, Anja and Ubachs, George and Mongenet, Catherine and Ruip{\´e}rez-Valiente, Jos{\´e} A. and Cortes Mendez, Manoel}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51030}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-510300}, pages = {vii, 295}, year = {2021}, abstract = {From June 22 to June 24, 2021, Hasso Plattner Institute, Potsdam, hosted the seventh European MOOC Stakeholder Summit (EMOOCs 2021) together with the eighth ACM Learning@Scale Conference. Due to the COVID-19 situation, the conference was held fully online. The boost in digital education worldwide as a result of the pandemic was also one of the main topics of this year's EMOOCs. All institutions of learning have been forced to transform and redesign their educational methods, moving from traditional models to hybrid or completely online models at scale. The learnings, derived from practical experience and research, have been explored in EMOOCs 2021 in six tracks and additional workshops, covering various aspects of this field. In this publication, we present papers from the conference's Experience Track, the Policy Track, the Business Track, the International Track, and the Workshops.}, language = {en} } @article{BethgeSerthStaubitzetal.2021, author = {Bethge, Joseph and Serth, Sebastian and Staubitz, Thomas and Wuttke, Tobias and Nordemann, Oliver and Das, Partha-Pratim and Meinel, Christoph}, title = {TransPipe}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-51694}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516943}, pages = {79 -- 94}, year = {2021}, abstract = {Online learning environments, such as Massive Open Online Courses (MOOCs), often rely on videos as a major component to convey knowledge. However, these videos exclude potential participants who do not understand the lecturer's language, regardless of whether that is due to language unfamiliarity or aural handicaps. Subtitles and/or interactive transcripts solve this issue, ease navigation based on the content, and enable indexing and retrieval by search engines. Although there are several automated speech-to-text converters and translation tools, their quality varies and the process of integrating them can be quite tedious. Thus, in practice, many videos on MOOC platforms only receive subtitles after the course is already finished (if at all) due to a lack of resources. This work describes an approach to tackle this issue by providing a dedicated tool, which is closing this gap between MOOC platforms and transcription and translation tools and offering a simple workflow that can easily be handled by users with a less technical background. The proposed method is designed and evaluated by qualitative interviews with three major MOOC providers.}, language = {en} } @book{MeinelWillemsStaubitzetal.2022, author = {Meinel, Christoph and Willems, Christian and Staubitz, Thomas and Sauer, Dominic and Hagedorn, Christiane}, title = {openHPI}, number = {148}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-544-6}, issn = {1613-5652}, doi = {10.25932/publishup-56020}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560208}, publisher = {Universit{\"a}t Potsdam}, pages = {125}, year = {2022}, abstract = {On the occasion of the 10th openHPI anniversary, this technical report provides information about the HPI MOOC platform, including its core features, technology, and architecture. In an introduction, the platform family with all partner platforms is presented; these now amount to nine platforms, including openHPI. This section introduces openHPI as an advisor and research partner in various projects. In the second chapter, the functionalities and common course formats of the platform are presented. The functionalities are divided into learner and admin features. The learner features section provides detailed information about performance records, courses, and the learning materials of which a course is composed: videos, texts, and quizzes. In addition, the learning materials can be enriched by adding external exercise tools that communicate with the HPI MOOC platform via the Learning Tools Interoperability (LTI) standard. Furthermore, the concept of peer assessments completed the possible learning materials. The section then proceeds with further information on the discussion forum, a fundamental concept of MOOCs compared to traditional e-learning offers. The section is concluded with a description of the quiz recap, learning objectives, mobile applications, gameful learning, and the help desk. The next part of this chapter deals with the admin features. The described functionality is restricted to describing the news and announcements, dashboards and statistics, reporting capabilities, research options with A/B testing, the course feed, and the TransPipe tool to support the process of creating automated or manual subtitles. The platform supports a large variety of additional features, but a detailed description of these features goes beyond the scope of this report. The chapter then elaborates on common course formats and openHPI teaching activities at the HPI. The chapter concludes with some best practices for course design and delivery. The third chapter provides insights into the technology and architecture behind openHPI. A special characteristic of the openHPI project is the conscious decision to operate the complete application from bare metal to platform development. Hence, the chapter starts with a section about the openHPI Cloud, including detailed information about the data center and devices, the used cloud software OpenStack and Ceph, as well as the openHPI Cloud Service provided for the HPI. Afterward, a section on the application technology stack and development tooling describes the application infrastructure components, the used automation, the deployment pipeline, and the tools used for monitoring and alerting. The chapter is concluded with detailed information about the technology stack and concrete platform implementation details. The section describes the service-oriented Ruby on Rails application, inter-service communication, and public APIs. It also provides more information on the design system and components used in the application. The section concludes with a discussion of the original microservice architecture, where we share our insights and reasoning for migrating back to a monolithic application. The last chapter provides a summary and an outlook on the future of digital education.}, language = {en} } @book{MeinelGalbasHageboelling2023, author = {Meinel, Christoph and Galbas, Michael and Hageb{\"o}lling, David}, title = {Digitale Souver{\"a}nit{\"a}t: Erkenntnisse aus dem deutschen Bildungssektor}, number = {156}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-560-6}, issn = {1613-5652}, doi = {10.25932/publishup-59513}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595138}, publisher = {Universit{\"a}t Potsdam}, pages = {1 -- 29}, year = {2023}, abstract = {Digitale Technologien bieten erhebliche politische, wirtschaftliche und gesellschaftliche Chancen. Zugleich ist der Begriff digitale Souver{\"a}nit{\"a}t zu einem Leitmotiv im deutschen Diskurs {\"u}ber digitale Technologien geworden: das heißt, die F{\"a}higkeit des Staates, seine Verantwortung wahrzunehmen und die Bef{\"a}higung der Gesellschaft - und des Einzelnen - sicherzustellen, die digitale Transformation selbstbestimmt zu gestalten. Exemplarisch f{\"u}r die Herausforderung in Deutschland und Europa, die Vorteile digitaler Technologien zu nutzen und gleichzeitig Souver{\"a}nit{\"a}tsbedenken zu ber{\"u}cksichtigen, steht der Bildungssektor. Er umfasst Bildung als zentrales {\"o}ffentliches Gut, ein schnell aufkommendes Gesch{\"a}ftsfeld und wachsende Best{\"a}nde an hochsensiblen personenbezogenen Daten. Davon ausgehend beschreibt der Bericht Wege zur Entsch{\"a}rfung des Spannungsverh{\"a}ltnisses zwischen Digitalisierung und Souver{\"a}nit{\"a}t auf drei verschiedenen Ebenen - Staat, Wirtschaft und Individuum - anhand konkreter technischer Projekte im Bildungsbereich: die HPI Schul-Cloud (staatliche Souver{\"a}nit{\"a}t), die MERLOT-Datenr{\"a}ume (wirtschaftliche Souver{\"a}nit{\"a}t) und die openHPI-Plattform (individuelle Souver{\"a}nit{\"a}t).}, language = {de} } @book{MeinelGalbasHageboelling2023, author = {Meinel, Christoph and Galbas, Michael and Hageb{\"o}lling, David}, title = {Digital sovereignty: insights from Germany's education sector}, number = {157}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-561-3}, issn = {1613-5652}, doi = {10.25932/publishup-59772}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597723}, publisher = {Universit{\"a}t Potsdam}, pages = {1 -- 27}, year = {2023}, abstract = {Digital technology offers significant political, economic, and societal opportunities. At the same time, the notion of digital sovereignty has become a leitmotif in German discourse: the state's capacity to assume its responsibilities and safeguard society's - and individuals' - ability to shape the digital transformation in a self-determined way. The education sector is exemplary for the challenge faced by Germany, and indeed Europe, of harnessing the benefits of digital technology while navigating concerns around sovereignty. It encompasses education as a core public good, a rapidly growing field of business, and growing pools of highly sensitive personal data. The report describes pathways to mitigating the tension between digitalization and sovereignty at three different levels - state, economy, and individual - through the lens of concrete technical projects in the education sector: the HPI Schul-Cloud (state sovereignty), the MERLOT data spaces (economic sovereignty), and the openHPI platform (individual sovereignty).}, language = {en} } @article{OmotoshoAyegbaEmuoyibofarheetal.2019, author = {Omotosho, Adebayo and Ayegba, Peace and Emuoyibofarhe, Justice and Meinel, Christoph}, title = {Current State of ICT in Healthcare Delivery in Developing Countries}, series = {International Journal of Online and Biomedical Engineering}, volume = {15}, journal = {International Journal of Online and Biomedical Engineering}, number = {8}, publisher = {Kassel University Press}, address = {Kassel}, issn = {2626-8493}, doi = {10.3991/ijoe.v15i08.10294}, pages = {91 -- 107}, year = {2019}, abstract = {Electronic health is one of the most popular applications of information and communication technologies and it has contributed immensely to health delivery through the provision of quality health service and ubiquitous access at a lower cost. Even though this mode of health service is increasingly becoming known or used in developing nations, these countries are faced with a myriad of challenges when implementing and deploying e-health services on both small and large scale. It is estimated that the Africa population alone carries the highest percentage of the world's global diseases despite its certain level of e-health adoption. This paper aims at analyzing the progress so far and the current state of e-health in developing countries particularly Africa and propose a framework for further improvement.}, language = {en} } @article{TorkuraSukmanaChengetal.2020, author = {Torkura, Kennedy A. and Sukmana, Muhammad Ihsan Haikal and Cheng, Feng and Meinel, Christoph}, title = {CloudStrike}, series = {IEEE access : practical research, open solutions}, volume = {8}, journal = {IEEE access : practical research, open solutions}, publisher = {Institute of Electrical and Electronics Engineers }, address = {Piscataway}, issn = {2169-3536}, doi = {10.1109/ACCESS.2020.3007338}, pages = {123044 -- 123060}, year = {2020}, abstract = {Most cyber-attacks and data breaches in cloud infrastructure are due to human errors and misconfiguration vulnerabilities. Cloud customer-centric tools are imperative for mitigating these issues, however existing cloud security models are largely unable to tackle these security challenges. Therefore, novel security mechanisms are imperative, we propose Risk-driven Fault Injection (RDFI) techniques to address these challenges. RDFI applies the principles of chaos engineering to cloud security and leverages feedback loops to execute, monitor, analyze and plan security fault injection campaigns, based on a knowledge-base. The knowledge-base consists of fault models designed from secure baselines, cloud security best practices and observations derived during iterative fault injection campaigns. These observations are helpful for identifying vulnerabilities while verifying the correctness of security attributes (integrity, confidentiality and availability). Furthermore, RDFI proactively supports risk analysis and security hardening efforts by sharing security information with security mechanisms. We have designed and implemented the RDFI strategies including various chaos engineering algorithms as a software tool: CloudStrike. Several evaluations have been conducted with CloudStrike against infrastructure deployed on two major public cloud infrastructure: Amazon Web Services and Google Cloud Platform. The time performance linearly increases, proportional to increasing attack rates. Also, the analysis of vulnerabilities detected via security fault injection has been used to harden the security of cloud resources to demonstrate the effectiveness of the security information provided by CloudStrike. Therefore, we opine that our approaches are suitable for overcoming contemporary cloud security issues.}, language = {en} } @article{GruenerMuehleMeinel2021, author = {Gr{\"u}ner, Andreas and M{\"u}hle, Alexander and Meinel, Christoph}, title = {ATIB}, series = {IEEE access : practical research, open solutions / Institute of Electrical and Electronics Engineers}, volume = {9}, journal = {IEEE access : practical research, open solutions / Institute of Electrical and Electronics Engineers}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2021.3116095}, pages = {138553 -- 138570}, year = {2021}, abstract = {Identity management is a principle component of securing online services. In the advancement of traditional identity management patterns, the identity provider remained a Trusted Third Party (TTP). The service provider and the user need to trust a particular identity provider for correct attributes amongst other demands. This paradigm changed with the invention of blockchain-based Self-Sovereign Identity (SSI) solutions that primarily focus on the users. SSI reduces the functional scope of the identity provider to an attribute provider while enabling attribute aggregation. Besides that, the development of new protocols, disregarding established protocols and a significantly fragmented landscape of SSI solutions pose considerable challenges for an adoption by service providers. We propose an Attribute Trust-enhancing Identity Broker (ATIB) to leverage the potential of SSI for trust-enhancing attribute aggregation. Furthermore, ATIB abstracts from a dedicated SSI solution and offers standard protocols. Therefore, it facilitates the adoption by service providers. Despite the brokered integration approach, we show that ATIB provides a high security posture. Additionally, ATIB does not compromise the ten foundational SSI principles for the users.}, language = {en} } @article{SerthStaubitzvanEltenetal.2022, author = {Serth, Sebastian and Staubitz, Thomas and van Elten, Martin and Meinel, Christoph}, title = {Measuring the effects of course modularizations in online courses for life-long learners}, series = {Frontiers in Education}, volume = {7}, journal = {Frontiers in Education}, editor = {Gamage, Dilrukshi}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2504-284X}, doi = {10.3389/feduc.2022.1008545}, pages = {15}, year = {2022}, abstract = {Many participants in Massive Open Online Courses are full-time employees seeking greater flexibility in their time commitment and the available learning paths. We recently addressed these requirements by splitting up our 6-week courses into three 2-week modules followed by a separate exam. Modularizing courses offers many advantages: Shorter modules are more sustainable and can be combined, reused, and incorporated into learning paths more easily. Time flexibility for learners is also improved as exams can now be offered multiple times per year, while the learning content is available independently. In this article, we answer the question of which impact this modularization has on key learning metrics, such as course completion rates, learning success, and no-show rates. Furthermore, we investigate the influence of longer breaks between modules on these metrics. According to our analysis, course modules facilitate more selective learning behaviors that encourage learners to focus on topics they are the most interested in. At the same time, participation in overarching exams across all modules seems to be less appealing compared to an integrated exam of a 6-week course. While breaks between the modules increase the distinctive appearance of individual modules, a break before the final exam further reduces initial interest in the exams. We further reveal that participation in self-paced courses as a preparation for the final exam is unlikely to attract new learners to the course offerings, even though learners' performance is comparable to instructor-paced courses. The results of our long-term study on course modularization provide a solid foundation for future research and enable educators to make informed decisions about the design of their courses.}, language = {en} }