@unpublished{FedchenkoTarkhanov2017, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {A Rad{\´o} Theorem for the Porous Medium Equation}, series = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, volume = {6}, journal = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102735}, pages = {12}, year = {2017}, abstract = {We prove that each locally Lipschitz continuous function satisfying the porous medium equation away from the set of its zeroes is actually a weak solution of this equation in the whole domain.}, language = {en} } @unpublished{ShlapunovTarkhanov2017, author = {Shlapunov, Alexander and Tarkhanov, Nikolai Nikolaevich}, title = {Golusin-Krylov Formulas in Complex Analysis}, series = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, volume = {6}, journal = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102774}, pages = {25}, year = {2017}, abstract = {This is a brief survey of a constructive technique of analytic continuation related to an explicit integral formula of Golusin and Krylov (1933). It goes far beyond complex analysis and applies to the Cauchy problem for elliptic partial differential equations as well. As started in the classical papers, the technique is elaborated in generalised Hardy spaces also called Hardy-Smirnov spaces.}, language = {en} } @unpublished{PolkovnikovTarkhanov2017, author = {Polkovnikov, Alexander and Tarkhanov, Nikolai Nikolaevich}, title = {A Riemann-Hilbert problem for the Moisil-Teodorescu system}, volume = {6}, number = {3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397036}, pages = {31}, year = {2017}, abstract = {In a bounded domain with smooth boundary in R^3 we consider the stationary Maxwell equations for a function u with values in R^3 subject to a nonhomogeneous condition (u,v)_x = u_0 on the boundary, where v is a given vector field and u_0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.}, language = {en} }