@article{Hudson2018, author = {Hudson, Paul}, title = {A comparison of definitions of affordability for flood risk adaption measures}, series = {Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change}, volume = {23}, journal = {Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change}, number = {7}, publisher = {Springer}, address = {Dordrecht}, issn = {1381-2386}, doi = {10.1007/s11027-017-9769-5}, pages = {1019 -- 1038}, year = {2018}, abstract = {Risk-based insurance is a commonly proposed and discussed flood risk adaptation mechanism in policy debates across the world such as in the United Kingdom and the United States of America. However, both risk-based premiums and growing risk pose increasing difficulties for insurance to remain affordable. An empirical concept of affordability is required as the affordability of adaption strategies is an important concern for policymakers, yet such a concept is not often examined. Therefore, a robust metric with a commonly acceptable affordability threshold is required. A robust metric allows for a previously normative concept to be quantified in monetary terms, and in this way, the metric is rendered more suitable for integration into public policy debates. This paper investigates the degree to which risk-based flood insurance premiums are unaffordable in Europe. In addition, this paper compares the outcomes generated by three different definitions of unaffordability in order to investigate the most robust definition. In doing so, the residual income definition was found to be the least sensitive to changes in the threshold. While this paper focuses on Europe, the selected definition can be employed elsewhere in the world and across adaption measures in order to develop a common metric for indicating the potential unaffordability problem.}, language = {en} } @article{OguntundeLischeidAbiodun2018, author = {Oguntunde, Philip G. and Lischeid, Gunnar and Abiodun, Babatunde Joseph}, title = {Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa}, series = {Stochastic Environmental Research and Risk Assessment}, volume = {32}, journal = {Stochastic Environmental Research and Risk Assessment}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1436-3240}, doi = {10.1007/s00477-017-1484-y}, pages = {1017 -- 1034}, year = {2018}, abstract = {West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986-2005) and future climates (2046-2065 and 2081-2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1-2, 2-4, 4-8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1-3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046-2065) to 2.4 (2081-2100) month year(-1) while under RCP8.5, the change ranges from 2.2 (2046-2065) to 3.0 month year(-1) (2081-2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change.}, language = {en} } @article{OguntundeAbiodunLischeid2017, author = {Oguntunde, Philip G. and Abiodun, Babatunde Joseph and Lischeid, Gunnar}, title = {Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa}, series = {Global and planetary change}, volume = {155}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2017.07.003}, pages = {121 -- 132}, year = {2017}, abstract = {This study examines the characteristics of drought in the Volta River Basin (VRB), investigates the influence of drought on the streamflow, and projects the impacts of future climate change on the drought. A combination of observation data and regional climate simulations of past and future climates (1970-2013, 2046-2065, and 2081-2100) were analyzed for the study. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration (SPEI) were used to characterize drought while the Standardized Runoff Index (SRI) were used to quantify runoff. Results of the study show that the historical pattern of drought is generally consistent with previous studies over the Basin and most part of West Africa. RCA ensemble medians (RMED) give realistic simulations of drought characteristics and area extent over the Basin and the sub-catchments in the past climate. Generally, an increase in drought intensity and spatial extent are projected over VRB for SPEI and SPI, but the magnitude of increase is higher with SPEI than with SPI. Drought frequency (events per decade) may be magnified by a factor of 1.2, (2046-2065) to 1.6 (2081-2100) compared to the present day episodes in the basin. The coupling between streamflow and drought episodes was very strong (P < 0.05) for the 1-16-year band before the 1970 but showed strong correlation all through the time series period for the 4-8 -years band. Runoff was highly sensitive to precipitation in the VRB and a 2-3 month time lag was found between drought indices and streamflow in the Volta River Basin. Results of this study may guide policymakers in planning how to minimize the negative impacts of future climate change that could have consequences on agriculture, water resources and energy supply.}, language = {en} } @misc{HudsonBotzenPoussinetal.2019, author = {Hudson, Paul and Botzen, W. J. Wouter and Poussin, Jennifer and Aerts, Jeroen C. J. H.}, title = {Impacts of flooding and flood preparedness on subjective well-being}, series = {Journal of Happiness Studies}, volume = {20}, journal = {Journal of Happiness Studies}, number = {2}, publisher = {Springer Science}, address = {Dordrecht}, issn = {1389-4978}, doi = {10.1007/s10902-017-9916-4}, pages = {665 -- 682}, year = {2019}, abstract = {Flood disasters severely impact human subjective well-being (SWB). Nevertheless, few studies have examined the influence of flood events on individual well-being and how such impacts may be limited by flood protection measures. This study estimates the long term impacts on individual subjective well-being of flood experiences, individual subjective flood risk perceptions, and household flood preparedness decisions. These effects are monetised and placed in context through a comparison with impacts of other adverse events on well-being. We collected data from households in flood-prone areas in France. The results indicate that experiencing a flood has a large negative impact on subjective well-being that is incompletely attenuated over time. Moreover, individuals do not need to be directly affected by floods to suffer SWB losses since subjective well-being is lower for those who expect their flood risk to increase or who have seen a neighbour being flooded. Floodplain inhabitants who prepared for flooding by elevating their home have a higher subjective well-being. A monetisation of the aforementioned well-being impacts shows that a flood requires Euro150,000 in immediate compensation to attenuate SWB losses. The decomposition of the monetised impacts of flood experience into tangible losses and intangible effects on SWB shows that intangible effects are about twice as large as the tangible direct monetary flood losses. Investments in flood protection infrastructure may be under funded if the intangible SWB benefits of flood protection are not taken into account.}, language = {en} } @article{HundechaSunyerLawrenceetal.2016, author = {Hundecha, Yeshewatesfa and Sunyer, Maria A. and Lawrence, Deborah and Madsen, Henrik and Willems, Patrick and B{\"u}rger, Gerd and Kriauciuniene, Jurate and Loukas, Athanasios and Martinkova, Marta and Osuch, Marzena and Vasiliades, Lampros and von Christierson, Birgitte and Vormoor, Klaus Josef and Yuecel, Ismail}, title = {Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe}, series = {Journal of hydrology}, volume = {541}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.08.033}, pages = {1273 -- 1286}, year = {2016}, abstract = {The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in different parts of Europe. The catchments vary from 67 to 6171 km(2) in size and cover different climate zones. 15 regional climate model outputs and 8 different statistical downscaling methods, which are broadly categorized as change factor and bias correction based methods, were used for the comparative analyses. Different hydrological models were implemented in different catchments to simulate daily runoff. A set of flood indices were derived from daily flows and their changes have been evaluated by comparing their values derived from simulations corresponding to the current and future climate. Most of the implemented downscaling methods project an increase in the extreme flow indices in most of the catchments. The catchments where the extremes are expected to increase have a rainfall dominated flood regime. In these catchments, the downscaling methods also project an increase in the extreme precipitation in the seasons when the extreme flows occur. In catchments where the flooding is mainly caused by spring/summer snowmelt, the downscaling methods project a decrease in the extreme flows in three of the four catchments considered. A major portion of the variability in the projected changes in the extreme flow indices is attributable to the variability of the climate model ensemble, although the statistical downscaling methods contribute 35-60\% of the total variance. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{VormoorLawrenceSchlichtingetal.2016, author = {Vormoor, Klaus Josef and Lawrence, Deborah and Schlichting, Lena and Wilson, Donna and Wong, Wai Kwok}, title = {Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway}, series = {Journal of hydrology}, volume = {538}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.03.066}, pages = {33 -- 48}, year = {2016}, abstract = {There is increasing evidence for recent changes in the intensity and frequency of heavy precipitation and in the number of days with snow cover in many parts of Norway. The question arises as to whether these changes are also discernable with respect to their impacts on the magnitude and frequency of flooding and on the processes producing high flows. In this study, we tested up to 211 catchments for trends in peak flow discharge series by applying the Mann-Kendall test and Poisson regression for three different time periods (1962-2012, 1972-2012, 1982-2012). Field-significance was tested using a bootstrap approach. Over threshold discharge events were classified into rainfall vs. snowmelt dominated floods, based on a simple water balance approach utilizing a nationwide 1 x 1 km(2) gridded data set with daily observed rainfall and simulated snowmelt data. Results suggest that trends in flood frequency are more pronounced than trends in flood magnitude and are more spatially consistent with observed changes in the hydrometeorological drivers. Increasing flood frequencies in southern and western Norway are mainly due to positive trends in the frequency of rainfall dominated events, while decreasing flood frequencies in northern Norway are mainly the result of negative trends in the frequency of snowmelt dominated floods. Negative trends in flood magnitude are found more often than positive trends, and the regional patterns of significant trends reflect differences in the flood generating processes (FGPs). The results illustrate the benefit of distinguishing FGPs rather than simply applying seasonal analyses. The results further suggest that rainfall has generally gained an increasing importance for the generation of floods in Norway, while the role of snowmelt has been decreasing and the timing of snowmelt dominated floods has become earlier. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{YairBryanLaveeetal.2013, author = {Yair, Aaron and Bryan, Rorke B. and Lavee, Hanoch and Schwanghart, Wolfgang and Kuhn, Nikolaus J.}, title = {The resilience of a badland area to climate change in an arid environment}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {106}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2012.04.006}, pages = {12 -- 21}, year = {2013}, abstract = {Badlands have long been considered as model landscapes due to their perceived close relationship between form and process. The often intense features of erosion have also attracted many geomorphologists because the associated high rates of erosion appeared to offer the opportunity for studying surface processes and the resulting forms. Recently, the perceived simplicity of badlands has been questioned because the expected relationships between driving forces for erosion and the resulting sediment yield could not be observed. Further, a high variability in erosion and sediment yield has been observed across scales. Finally, denudation based on currently observed erosion rates would have lead to the destruction of most badlands a long time ago. While the perceived simplicity of badlands has sparked a disproportional (compared to the land surface they cover) amount of research, our increasing amount of information has not necessarily increased our understanding of badlands in equal terms. Overall, badlands appear to be more complex than initially assumed. In this paper, we review 40 years of research in the Zin Valley Badlands in Israel to reconcile some of the conflicting results observed there and develop a perspective on the function of badlands as model landscapes. While the data collected in the Zin Valley clearly confirm that spatial and temporal patterns of geomorphic processes and their interaction with topography and surface properties have to be understood, we still conclude that the process of realizing complexity in the "simple" badlands has a model function both for our understanding as well as perspective on all landscape systems.}, language = {en} } @article{WiesmeierPrietzelBartholdetal.2013, author = {Wiesmeier, Martin and Prietzel, J{\"o}rg and Barthold, Frauke Katrin and Sp{\"o}rlein, Peter and Geuss, Uwe and Hangen, Edzard and Reischl, Arthur and Schilling, Bernd and von L{\"u}tzow, Margit and K{\"o}gel-Knabner, Ingrid}, title = {Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) - Implications for carbon sequestration}, series = {Forest ecology and management}, volume = {295}, journal = {Forest ecology and management}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2013.01.025}, pages = {162 -- 172}, year = {2013}, abstract = {Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1 m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8 kg m(-2) which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35\% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change.}, language = {en} } @unpublished{WellsteinSchroederEsselbachReinekingetal.2011, author = {Wellstein, Camilla and Schr{\"o}der-Esselbach, Boris and Reineking, Bjoern and Zimmermann, Niklaus E.}, title = {Understanding species and community response to environmental change - A functional trait perspective}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {145}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2011.06.024}, pages = {1 -- 4}, year = {2011}, language = {en} } @article{SommerKalbeEkstrometal.2014, author = {Sommer, Robert S. and Kalbe, Johannes and Ekstrom, Jonas and Benecke, Norbert and Liljegren, Ronnie}, title = {Range dynamics of the reindeer in Europe during the last 25,000 years}, series = {Journal of biogeography}, volume = {41}, journal = {Journal of biogeography}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.12193}, pages = {298 -- 306}, year = {2014}, abstract = {Aim To understand the role and significance of the reindeer, Rangifer tarandus (Linnaeus, 1758), as a specific indicator in terms of late Quaternary biogeography and to determine the effects of global climate change on its range and local extinction dynamics at the end of the Ice Age. Location Late Pleistocene/early Holocene range of reindeer over all of central and western Europe, including southern Scandinavia and northern Iberia, but excluding Russia, Belarus and the Ukraine. Methods Radiocarbon-dated subfossil records of R. tarandus from both archaeological and natural deposits younger than 25,000 years were assembled in a database. The distribution area was divided into six representative regions. The C-14 dates were calibrated and plotted chronologically in maps in order to compare presence and absence and regional extinction patterns from one region to another. Main conclusions The late Quaternary record for reindeer in Europe during the last 25 kyr shows a climate-driven dispersal and retreat in response to climate change, with regional variations. The collapse of the mammoth steppe biome did not lead to the local extinction in Europe, as in the case of other megafaunal species. Rangifer tarandus co-existed for about 3000 years during the Late Glacial and early Holocene with typical temperate species such as red deer and roe deer in non-analogue faunal communities. The regional extinction at the end of the Pleistocene coincides with the transition from light open birch/pine forests to pine/deciduous forests.}, language = {en} } @article{BartholdWiesmeierBreueretal.2013, author = {Barthold, Frauke Katrin and Wiesmeier, Martin and Breuer, L. and Frede, Hans-Georg and Wu, J. and Blank, F. Benjamin}, title = {Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia}, series = {Journal of arid environments}, volume = {88}, journal = {Journal of arid environments}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2012.08.004}, pages = {194 -- 205}, year = {2013}, abstract = {The spatial distribution of soil types is controlled by a set of environmental factors such as climate, organisms, parent material and topography as well as time and space. A change of these factors will lead to a change in the spatial distribution of soil types. In this study, we use a digital soil mapping approach to improve our knowledge about major soil type distributing factors in the steppe regions of Inner Mongolia (China) which currently undergo tremendous environmental change, e.g. climate and land use change. We use Random Forests in an effort to map Reference Soil Groups according to the World Reference Base for Soil Resources (WRB) in the Xilin River catchment. We benefit from the superior prediction capabilities of RF and additional interpretive results in order to identify the major environmental factors that control spatial patterns of soil types. The nine WRB soil groups that were identified and spatially predicted for the study area are Arenosol, Calcisol, Cambisol, Chernozem, Cryosol, Gleysol, Kastanozem, Phaeozem and Regosol. Model and prediction performances of the RF model are high with an Out-of-Bag error of 51.6\% for the model and a misclassification error for the predicted map of 28.9\%. The main controlling factors of soil type distribution are land use, a set of topographic variables, geology and climate. However, land use and climate are of major importance and topography and geology are of minor importance. The visualizations of the predictions, the variable importance measures as result of RF and the comparisons of these with the spatial distribution of the environmental factors delivered additional, quantitative information of these controlling factors and revealed that intensively grazed areas are subjected to soil degradation. However, most of the area is still governed by natural soil forming processes which are driven by climate, topography and geology. Most importantly though, our study revealed that a shift towards warmer temperatures and lower precipitation regimes will lead to a change of the spatial distribution of RSGs towards steppe soils that store less carbon, i.e. a decrease of spatial extent of Phaeozems and an increase of spatial extent of Chernozems and Kastanozems.}, language = {en} } @article{NorrisCarvalhoJonesetal.2017, author = {Norris, Jesse and Carvalho, Leila M. V. and Jones, Charles and Cannon, Forest and Bookhagen, Bodo and Palazzi, Elisa and Tahir, Adnan Ahmad}, title = {The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {49}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-016-3414-y}, pages = {2179 -- 2204}, year = {2017}, abstract = {The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya.}, language = {en} } @article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Trauth, Martin H.}, title = {Modelling vegetation change during Late Cenozoic uplift of the East African plateaus}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {467}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2016.04.007}, pages = {120 -- 130}, year = {2017}, abstract = {The present-day vegetation in the tropics is mainly characterized by forests worldwide except in tropical East Africa, where forests only occur as patches at the coast and in the uplands. These forest patches result from the peculiar aridity that is linked to the uplift of the region during the Late Cenozoic. The Late Cenozoic vegetation history of East Africa is of particular interest as it has set the scene for the contemporary events in mammal and hominin evolution. In this study, we investigate the conditions under which these forest patches could have been connected, and a previous continuous forest belt could have extended and fragmented. We apply a dynamic vegetation model with a set of climatic scenarios in which we systematically alter the present-day environmental conditions such that they would be more favourable for a continuous forest belt in tropical East Africa. We consider varying environmental factors, namely temperature, precipitation and atmospheric CO2 concentrations. Our results show that all of these variables play a significant role in supporting the forest biomes and a continuous forest belt could have occurred under certain combinations of these settings. With our current knowledge of the palaeoenvironmental history of East Africa, it is likely that the region hosted these conditions during the Late Cenozoic. Recent improvements on environmental hypotheses of hominin evolution highlight the role of periods of short and extreme climate variability during the Late Cenozoic specific to East Africa in driving evolution. Our results elucidate how the forest biomes of East Africa can appear and disappear under fluctuating environmental conditions and demonstrate how this climate variability might be recognized on the biosphere level.}, language = {en} } @article{TekkenCostaKropp2013, author = {Tekken, Vera and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Kropp, J{\"u}rgen}, title = {Increasing pressure, declining water and climate change in north-eastern Morocco}, series = {Journal of coastal conservation : planning and management}, volume = {17}, journal = {Journal of coastal conservation : planning and management}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1400-0350}, doi = {10.1007/s11852-013-0234-7}, pages = {379 -- 388}, year = {2013}, abstract = {The coastal stretch of north-eastern Mediterranean Morocco holds vitally important ecological, social, and economic functions. The implementation of large-scale luxury tourism resorts shall push socio-economic development and facilitate the shift from a mainly agrarian to a service economy. Sufficient water availability and intact beaches are among the key requirements for the successful realization of regional development plans. The water situation is already critical, additional water-intense sectors could overstrain the capacity of water resources. Further, coastal erosion caused by sea-level rise is projected. Regional climate change is observable, and must be included in regional water management. Long-term climate trends are assessed for the larger region (Moulouya basin) and for the near-coastal zone at Saidia. The amount of additional water demand is assessed for the large-dimensioned Saidia resort; including the monthly, seasonal and annual tourist per capita water need under inclusion of irrigated golf courses and garden areas. A shift of climate patterns is observed, a lengthening of the dry summer season, and as well a significant decline of annual precipitation. Thus, current water scarcity is mainly human-induced; however, climate change will aggravate the situation. As a consequence, severe environmental damage due to water scarcity is likely and could impinge on the quality of local tourism. The re-adjustment of current management routines is therefore essential. Possible adjustments are discussed and the analysis concludes with management recommendations for innovative regional water management of tourism facilities.}, language = {en} } @article{OlonscheckWaltherLuedekeetal.2015, author = {Olonscheck, Mady and Walther, Carsten and L{\"u}deke, Matthias K. B. and Kropp, J{\"u}rgen}, title = {Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands}, series = {Energy}, volume = {90}, journal = {Energy}, publisher = {Elsevier}, address = {Oxford}, issn = {0360-5442}, doi = {10.1016/j.energy.2015.07.080}, pages = {560 -- 569}, year = {2015}, abstract = {In order to achieve meaningful climate protection targets at the global scale, each country is called to set national energy policies aimed at reducing energy consumption and carbon emissions. By calculating the monthly heating energy demand of dwellings in the Netherlands, our case study country, we contrast the results with the corresponding aspired national targets. Considering different future population scenarios, renovation measures and temperature variations, we show that a near zero energy demand in 2050 could only be reached with very ambitious renovation measures. While the goal of reducing the energy demand of the building sector by 50\% until 2030 compared to 1990 seems feasible for most provinces and months in the minimum scenario, it is impossible in our scenario with more pessimistic yet still realistic assumptions regarding future developments. Compared to the current value, the annual renovation rate per province would need to be at least doubled in order to reach the 2030 target independent of reasonable climatic and population changes in the future. Our findings also underline the importance of policy measures as the annual renovation rate is a key influencing factor regarding the reduction of the heating energy demand in dwellings. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{VehKorupvonSpechtetal.2019, author = {Veh, Georg and Korup, Oliver and von Specht, Sebastian and R{\"o}ßner, Sigrid and Walz, Ariane}, title = {Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya}, series = {Nature climate change}, volume = {9}, journal = {Nature climate change}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-019-0437-5}, pages = {379 -- 383}, year = {2019}, abstract = {Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards.}, language = {en} } @article{ButerHeckmannFilisettietal.2022, author = {Buter, Anuschka and Heckmann, Tobias and Filisetti, Lorenzo and Savi, Sara and Mao, Luca and Gems, Bernhard and Comiti, Francesco}, title = {Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {402}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2022.108128}, pages = {17}, year = {2022}, abstract = {In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics.}, language = {en} } @misc{LawrenceSchaeferMurietal.2018, author = {Lawrence, Mark and Sch{\"a}fer, Stefan and Muri, Helene and Scott, Vivian and Oschlies, Andreas and Vaughan, Naomi E. and Boucher, Olivier and Schmidt, Hauke and Haywood, Jim and Scheffran, J{\"u}rgen}, title = {Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05938-3}, pages = {19}, year = {2018}, abstract = {Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth's radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals.}, language = {en} } @article{OeztuerkBozzolanHolcombeetal.2022, author = {{\"O}zt{\"u}rk, Ugur and Bozzolan, Elisa and Holcombe, Elizabeth A. and Shukla, Roopam and Pianosi, Francesca and Wagener, Thorsten}, title = {How climate change and unplanned urban sprawl bring more landslides}, series = {Nature : the international weekly journal of science}, volume = {608}, journal = {Nature : the international weekly journal of science}, number = {7922}, publisher = {Nature portfolio}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/d41586-022-02141-9}, pages = {262 -- 265}, year = {2022}, abstract = {More settlements will suffer as heavy rains and unregulated construction destabilize slopes in the tropics, models show.}, language = {en} } @article{WischnewskiHerzschuhRuehlandetal.2014, author = {Wischnewski, Juliane and Herzschuh, Ulrike and Ruehland, Kathleen M. and Braeuning, Achim and Mischke, Steffen and Smol, John P. and Wang, Lily}, title = {Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data}, series = {Journal of paleolimnolog}, volume = {51}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-013-9747-1}, pages = {287 -- 302}, year = {2014}, abstract = {The Tibetan Plateau is a region that is highly sensitive to recent global warming, but the complexity and heterogeneity of its mountainous landscape can result in variable responses. In addition, the scarcity and brevity of regional instrumental and palaeoecological records still hamper our understanding of past and present patterns of environmental change. To investigate how the remote, high-alpine environments of the Nianbaoyeze Mountains, eastern Tibetan Plateau, are affected by climate change and human activity over the last similar to 600 years, we compared regional tree-ring studies with pollen and diatom remains archived in the dated sediments of Dongerwuka Lake (33.22A degrees N, 101.12A degrees E, 4,307 m a.s.l.). In agreement with previous studies from the eastern Tibetan Plateau, a strong coherence between our two juniper-based tree-ring chronologies from the Nianbaoyeze and the Anemaqin Mountains was observed, with pronounced cyclical variations in summer temperature reconstructions. A positive directional trend to warmer summer temperatures in the most recent decades, was, however, not observed in the tree-ring record. Likewise, our pollen and diatom spectra showed minimal change over the investigated time period. Although modest, the most notable change in the diatom relative abundances was a subtle decrease in the dominant planktonic Cyclotella ocellata and a concurrent increase in small, benthic fragilarioid taxa in the similar to 1820s, suggesting higher ecosystem variability. The pollen record subtly indicates three periods of increased cattle grazing activity (similar to 1400-1480 AD, similar to 1630-1760 AD, after 1850 AD), but shows generally no significant vegetation changes during past similar to 600 years. The minimal changes observed in the tree-ring, diatom and pollen records are consistent with the presence of localised cooling centres that are evident in instrumental and tree-ring data within the southeastern and eastern Tibetan Plateau. Given the minor changes in regional temperature records, our complacent palaeoecological profiles suggest that climatically induced ecological thresholds have not yet been crossed in the Nianbaoyeze Mountains region.}, language = {en} } @article{WischnewskiMackayApplebyetal.2011, author = {Wischnewski, Juliane and Mackay, Anson W. and Appleby, Peter G. and Mischke, Steffen and Herzschuh, Ulrike}, title = {Modest diatom responses to regional warming on the southeast Tibetan Plateau during the last two centuries}, series = {Journal of paleolimnolog}, volume = {46}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-011-9533-x}, pages = {215 -- 227}, year = {2011}, abstract = {A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a (210)Pb/(137)Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The (210)Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high (210)Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures.}, language = {en} }