@phdthesis{Stettner2018, author = {Stettner, Samuel}, title = {Exploring the seasonality of rapid Arctic changes from space}, doi = {10.25932/publishup-42578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425783}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 132}, year = {2018}, abstract = {Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution.}, language = {en} } @phdthesis{Guertler2005, author = {G{\"u}rtler, Christine}, title = {Soziale Ungleichheit unter Kindern : {\"u}ber die Rolle von Kind- und Elternhausmerkmalen f{\"u}r die Akzeptanz und den Einfluss eines Kindes in seiner Schulklasse}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16797}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Ziel der Studie war die Untersuchung individueller und familialer Faktoren f{\"u}r den sozialen Status eines Kindes in seiner Schulklasse. Durch die Unterscheidung von Akzeptanz und Einfluss als zweier Hauptdimensionen des sozialen Status konnte die Arbeit aufkl{\"a}ren, welche Rolle verschiedene Attribute f{\"u}r das Erreichen von Akzeptanz oder Einfluss spielen. 234 Dritt- und F{\"u}nftkl{\"a}ssler aus Berliner Grundschulen erhielten soziometrische Maße, durch welche der soziale Status erhoben wurde (Akzeptanz und Einfluss). Individuelle und familiale Faktoren wurden mittels Peernominationen {\"u}ber das Verhalten der Kinder (Fremdurteil), Schulnoten (Lehrerangabe)und Maße des sozio-{\"o}konomischen Status der Eltern (Elternangabe)erhoben. Die Ergebnisse zeigen, dass Akzeptanz positiv mit prosozialem und negativ mit aggressivem Verhalten eines Kindes assoziiert ist. Die Zusammenh{\"a}nge dieser Verhaltensweisen mit Einfluss wiesen in dieselbe Richtung, waren aber deutlich geringer. Ideenreichtum und Humor hingen mit Akzeptanz und Einfluss gleichermaßen positiv zusammen, sowie Traurigsein gleichermaßen negativ mit beiden Statusdimensionen verbunden war. Das Verhalten eines Kindes vermittelte den Zusammenhang zwischen Merkmalen wie Geschlecht, relativem Alter, Schulnoten und der Akzeptanz und dem Einfluss eines Kindes. Zum Beispiel war die positive Beziehung zwischen Schulnoten und dem sozialen Status {\"u}berwiegend auf die mit(guten)Schulnoten assoziierten Verhaltensweisen Prosozialit{\"a}t und (geringe) Aggressivit{\"a}t zur{\"u}ckzuf{\"u}hren. Die gr{\"o}ßere Akzeptanz von M{\"a}dchen ließ sich ebenso durch deren gr{\"o}ßere Prosozialit{\"a}t und geringere Aggressivit{\"a}t erkl{\"a}ren. Jungen waren im Hinblick auf ihren Einfluss sowohl am oberen als auch am unteren Ende der Hierarchie {\"u}berrepr{\"a}sentiert. Sowohl sehr einflussreiche als auch einflusslose Jungen zeichneten sich durch eine erh{\"o}hte Aggressivit{\"a}t aus. Komplexere Analysen wiesen daraufhin, dass Jungen negative Auswirkungen von aggressivem Verhalten durch Humor und Ideenreichtum auf ihren Status kompensieren konnten. Der moderate Zusammenhang zwischen dem elterlichen sozio{\"o}konomischen Status und dem sozialen Status des Kindes wurde vollst{\"a}ndig durch das Verhalten des Kindes mediiert. Das Elternhaus war wichtiger f{\"u}r die Akzeptanz als f{\"u}r den Einfluss eines Kindes. Kinder mit Migrationshintergrund waren sowohl weniger akzeptiert als auch weniger einflussreich in ihrer Klasse. Elterliche Trennung trug nicht zur sozialen Position eines Kindes bei.}, language = {de} } @phdthesis{Schuette2011, author = {Sch{\"u}tte, Moritz}, title = {Evolutionary fingerprints in genome-scale networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57483}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Mathematical modeling of biological phenomena has experienced increasing interest since new high-throughput technologies give access to growing amounts of molecular data. These modeling approaches are especially able to test hypotheses which are not yet experimentally accessible or guide an experimental setup. One particular attempt investigates the evolutionary dynamics responsible for today's composition of organisms. Computer simulations either propose an evolutionary mechanism and thus reproduce a recent finding or rebuild an evolutionary process in order to learn about its mechanism. The quest for evolutionary fingerprints in metabolic and gene-coexpression networks is the central topic of this cumulative thesis based on four published articles. An understanding of the actual origin of life will probably remain an insoluble problem. However, one can argue that after a first simple metabolism has evolved, the further evolution of metabolism occurred in parallel with the evolution of the sequences of the catalyzing enzymes. Indications of such a coevolution can be found when correlating the change in sequence between two enzymes with their distance on the metabolic network which is obtained from the KEGG database. We observe that there exists a small but significant correlation primarily on nearest neighbors. This indicates that enzymes catalyzing subsequent reactions tend to be descended from the same precursor. Since this correlation is relatively small one can at least assume that, if new enzymes are no "genetic children" of the previous enzymes, they certainly be descended from any of the already existing ones. Following this hypothesis, we introduce a model of enzyme-pathway coevolution. By iteratively adding enzymes, this model explores the metabolic network in a manner similar to diffusion. With implementation of an Gillespie-like algorithm we are able to introduce a tunable parameter that controls the weight of sequence similarity when choosing a new enzyme. Furthermore, this method also defines a time difference between successive evolutionary innovations in terms of a new enzyme. Overall, these simulations generate putative time-courses of the evolutionary walk on the metabolic network. By a time-series analysis, we find that the acquisition of new enzymes appears in bursts which are pronounced when the influence of the sequence similarity is higher. This behavior strongly resembles punctuated equilibrium which denotes the observation that new species tend to appear in bursts as well rather than in a gradual manner. Thus, our model helps to establish a better understanding of punctuated equilibrium giving a potential description at molecular level. From the time-courses we also extract a tentative order of new enzymes, metabolites, and even organisms. The consistence of this order with previous findings provides evidence for the validity of our approach. While the sequence of a gene is actually subject to mutations, its expression profile might also indirectly change through the evolutionary events in the cellular interplay. Gene coexpression data is simply accessible by microarray experiments and commonly illustrated using coexpression networks where genes are nodes and get linked once they show a significant coexpression. Since the large number of genes makes an illustration of the entire coexpression network difficult, clustering helps to show the network on a metalevel. Various clustering techniques already exist. However, we introduce a novel one which maintains control of the cluster sizes and thus assures proper visual inspection. An application of the method on Arabidopsis thaliana reveals that genes causing a severe phenotype often show a functional uniqueness in their network vicinity. This leads to 20 genes of so far unknown phenotype which are however suggested to be essential for plant growth. Of these, six indeed provoke such a severe phenotype, shown by mutant analysis. By an inspection of the degree distribution of the A.thaliana coexpression network, we identified two characteristics. The distribution deviates from the frequently observed power-law by a sharp truncation which follows after an over-representation of highly connected nodes. For a better understanding, we developed an evolutionary model which mimics the growth of a coexpression network by gene duplication which underlies a strong selection criterion, and slight mutational changes in the expression profile. Despite the simplicity of our assumption, we can reproduce the observed properties in A.thaliana as well as in E.coli and S.cerevisiae. The over-representation of high-degree nodes could be identified with mutually well connected genes of similar functional families: zinc fingers (PF00096), flagella, and ribosomes respectively. In conclusion, these four manuscripts demonstrate the usefulness of mathematical models and statistical tools as a source of new biological insight. While the clustering approach of gene coexpression data leads to the phenotypic characterization of so far unknown genes and thus supports genome annotation, our model approaches offer explanations for observed properties of the coexpression network and furthermore substantiate punctuated equilibrium as an evolutionary process by a deeper understanding of an underlying molecular mechanism.}, language = {en} } @phdthesis{Gressel2008, author = {Gressel, Oliver}, title = {Supernova-driven turbulence and magnetic field amplification in disk galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29094}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Analytical models based on the uncorrelated-ensemble approach predicted that any created field will be expelled from the disk before a significant amplification can occur. By means of direct simulations of supernova-driven turbulence, we demonstrate that this is not the case. Accounting for vertical stratification and galactic differential rotation, we find an exponential amplification of the mean field on timescales of 100Myr. The self-consistent numerical verification of such a "fast dynamo" is highly beneficial in explaining the observed strong magnetic fields in young galaxies. We, furthermore, highlight the importance of rotation in the generation of helicity by showing that a similar mechanism based on Cartesian shear does not lead to a sustained amplification of the mean magnetic field. This finding impressively confirms the classical picture of a dynamo based on cyclonic turbulence.}, language = {en} } @phdthesis{Beamish2019, author = {Beamish, Alison Leslie}, title = {Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation}, doi = {10.25932/publishup-42592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425922}, school = {Universit{\"a}t Potsdam}, pages = {v, 102}, year = {2019}, abstract = {Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales.}, language = {en} } @phdthesis{Ulaganathan2016, author = {Ulaganathan, Vamseekrishna}, title = {Molecular fundamentals of foam fractionation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94263}, school = {Universit{\"a}t Potsdam}, pages = {ix, 136}, year = {2016}, abstract = {Foam fractionation of surfactant and protein solutions is a process dedicated to separate surface active molecules from each other due to their differences in surface activities. The process is based on forming bubbles in a certain mixed solution followed by detachment and rising of bubbles through a certain volume of this solution, and consequently on the formation of a foam layer on top of the solution column. Therefore, systematic analysis of this whole process comprises of at first investigations dedicated to the formation and growth of single bubbles in solutions, which is equivalent to the main principles of the well-known bubble pressure tensiometry. The second stage of the fractionation process includes the detachment of a single bubble from a pore or capillary tip and its rising in a respective aqueous solution. The third and final stage of the process is the formation and stabilization of the foam created by these bubbles, which contains the adsorption layers formed at the growing bubble surface, carried up and gets modified during the bubble rising and finally ends up as part of the foam layer. Bubble pressure tensiometry and bubble profile analysis tensiometry experiments were performed with protein solutions at different bulk concentrations, solution pH and ionic strength in order to describe the process of accumulation of protein and surfactant molecules at the bubble surface. The results obtained from the two complementary methods allow understanding the mechanism of adsorption, which is mainly governed by the diffusional transport of the adsorbing protein molecules to the bubble surface. This mechanism is the same as generally discussed for surfactant molecules. However, interesting peculiarities have been observed for protein adsorption kinetics at sufficiently short adsorption times. First of all, at short adsorption times the surface tension remains constant for a while before it decreases as expected due to the adsorption of proteins at the surface. This time interval is called induction time and it becomes shorter with increasing protein bulk concentration. Moreover, under special conditions, the surface tension does not stay constant but even increases over a certain period of time. This so-called negative surface pressure was observed for BCS and BLG and discussed for the first time in terms of changes in the surface conformation of the adsorbing protein molecules. Usually, a negative surface pressure would correspond to a negative adsorption, which is of course impossible for the studied protein solutions. The phenomenon, which amounts to some mN/m, was rather explained by simultaneous changes in the molar area required by the adsorbed proteins and the non-ideality of entropy of the interfacial layer. It is a transient phenomenon and exists only under dynamic conditions. The experiments dedicated to the local velocity of rising air bubbles in solutions were performed in a broad range of BLG concentration, pH and ionic strength. Additionally, rising bubble experiments were done for surfactant solutions in order to validate the functionality of the instrument. It turns out that the velocity of a rising bubble is much more sensitive to adsorbing molecules than classical dynamic surface tension measurements. At very low BLG or surfactant concentrations, for example, the measured local velocity profile of an air bubble is changing dramatically in time scales of seconds while dynamic surface tensions still do not show any measurable changes at this time scale. The solution's pH and ionic strength are important parameters that govern the measured rising velocity for protein solutions. A general theoretical description of rising bubbles in surfactant and protein solutions is not available at present due to the complex situation of the adsorption process at a bubble surface in a liquid flow field with simultaneous Marangoni effects. However, instead of modelling the complete velocity profile, new theoretical work has been started to evaluate the maximum values in the profile as characteristic parameter for dynamic adsorption layers at the bubble surface more quantitatively. The studies with protein-surfactant mixtures demonstrate in an impressive way that the complexes formed by the two compounds change the surface activity as compared to the original native protein molecules and therefore lead to a completely different retardation behavior of rising bubbles. Changes in the velocity profile can be interpreted qualitatively in terms of increased or decreased surface activity of the formed protein-surfactant complexes. It was also observed that the pH and ionic strength of a protein solution have strong effects on the surface activity of the protein molecules, which however, could be different on the rising bubble velocity and the equilibrium adsorption isotherms. These differences are not fully understood yet but give rise to discussions about the structure of protein adsorption layer under dynamic conditions or in the equilibrium state. The third main stage of the discussed process of fractionation is the formation and characterization of protein foams from BLG solutions at different pH and ionic strength. Of course a minimum BLG concentration is required to form foams. This minimum protein concentration is a function again of solution pH and ionic strength, i.e. of the surface activity of the protein molecules. Although at the isoelectric point, at about pH 5 for BLG, the hydrophobicity and hence the surface activity should be the highest, the concentration and ionic strength effects on the rising velocity profile as well as on the foamability and foam stability do not show a maximum. This is another remarkable argument for the fact that the interfacial structure and behavior of BLG layers under dynamic conditions and at equilibrium are rather different. These differences are probably caused by the time required for BLG molecules to adapt respective conformations once they are adsorbed at the surface. All bubble studies described in this work refer to stages of the foam fractionation process. Experiments with different systems, mainly surfactant and protein solutions, were performed in order to form foams and finally recover a solution representing the foamed material. As foam consists to a large extent of foam lamella - two adsorption layers with a liquid core - the concentration in a foamate taken from foaming experiments should be enriched in the stabilizing molecules. For determining the concentration of the foamate, again the very sensitive bubble rising velocity profile method was applied, which works for any type of surface active materials. This also includes technical surfactants or protein isolates for which an accurate composition is unknown.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Schulze2017, author = {Schulze, Nicole}, title = {Neue Templatphasen zur anisotropen Goldnanopartikelherstellung durch den Einsatz strukturbildender Polymere}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409515}, school = {Universit{\"a}t Potsdam}, pages = {VI, 117, xv}, year = {2017}, abstract = {Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung von anisotropen Goldnanopartikeln in einer geeigneten Polyelektrolyt-modifizierten Templatphase. Der Mittelpunkt bildet dabei die Auswahl einer geeigneten Templatphase, zur Synthese von einheitlichen und reproduzierbaren anisotropen Goldnanopartikeln mit den daraus resultierenden besonderen Eigenschaften. Bei der Synthese der anisotropen Goldnanopartikeln lag der Fokus in der Verwendung von Vesikeln als Templatphase, wobei hier der Einfluss unterschiedlicher strukturbildender Polymere (stark alternierende Maleamid-Copolymere PalH, PalPh, PalPhCarb und PalPhBisCarb mit verschiedener Konformation) und Tenside (SDS, AOT - anionische Tenside) bei verschiedenen Synthese- und Abtrennungsbedingungen untersucht werden sollte. Im ersten Teil der Arbeit konnte gezeigt werden, dass PalPhBisCarb bei einem pH-Wert von 9 die Bedingungen eines R{\"o}hrenbildners f{\"u}r eine morphologische Transformation von einer vesikul{\"a}ren Phase in eine r{\"o}hrenf{\"o}rmige Netzwerkstruktur erf{\"u}llt und somit als Templatphase zur formgesteuerten Bildung von Nanopartikeln genutzt werden kann. Im zweiten Teil der Arbeit wurde dargelegt, dass die Templatphase PalPhBisCarb (pH-Wert von 9, Konzentration von 0,01 wt.\%) mit AOT als Tensid und PL90G als Phospholipid (im Verh{\"a}ltnis 1:1) die effektivste Wahl einer Templatphase f{\"u}r die Bildung von anisotropen Strukturen in einem einstufigen Prozess darstellt. Bei einer konstanten Synthesetemperatur von 45 °C wurden die besten Ergebnisse bei einer Goldchloridkonzentration von 2 mM, einem Gold-Templat-Verh{\"a}ltnis von 3:1 und einer Synthesezeit von 30 Minuten erzielt. Ausbeute an anisotropen Strukturen lag bei 52 \% (Anteil an dreieckigen Nanopl{\"a}ttchen von 19 \%). Durch Erh{\"o}hung der Synthesetemperatur konnte die Ausbeute auf 56 \% (29 \%) erh{\"o}ht werden. Im dritten Teil konnte durch zeitabh{\"a}ngige Untersuchungen gezeigt werden, dass bei Vorhandensein von PalPhBisCarb die Bildung der energetisch nicht bevorzugten Pl{\"a}ttchen-Strukturen bei Raumtemperatur initiiert wird und bei 45 °C ein Optimum annimmt. Kintetische Untersuchungen haben gezeigt, dass die Bildung dreieckiger Nanopl{\"a}ttchen bei schrittweiser Zugabe der Goldchlorid-Pr{\"a}kursorl{\"o}sung zur PalPhBisCarb enthaltenden Templatphase durch die Dosierrate der vesikul{\"a}ren Templatphase gesteuert werden kann. In umgekehrter Weise findet bei Zugabe der Templatphase zur Goldchlorid-Pr{\"a}kursorl{\"o}sung bei 45 °C ein {\"a}hnlicher, kinetisch gesteuerter Prozess der Bildung von Nanodreiecken statt mit einer maximalen Ausbeute dreieckigen Nanopl{\"a}ttchen von 29 \%. Im letzten Kapitel erfolgten erste Versuche zur Abtrennung dreieckiger Nanopl{\"a}ttchen von den {\"u}brigen Geometrien der gemischten Nanopartikell{\"o}sung mittels tensidinduzierter Verarmungsf{\"a}llung. Bei Verwendung von AOT mit einer Konzentration von 0,015 M wurde eine Ausbeute an Nanopl{\"a}ttchen von 99 \%, wovon 72 \% dreieckiger Geometrien hatten, erreicht.}, language = {de} } @phdthesis{Latnikova2012, author = {Latnikova, Alexandra}, title = {Polymeric capsules for self-healing anticorrosion coatings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60432}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The present work is devoted to establishing of a new generation of self-healing anti-corrosion coatings for protection of metals. The concept of self-healing anticorrosion coatings is based on the combination of the passive part, represented by the matrix of conventional coating, and the active part, represented by micron-sized capsules loaded with corrosion inhibitor. Polymers were chosen as the class of compounds most suitable for the capsule preparation. The morphology of capsules made of crosslinked polymers, however, was found to be dependent on the nature of the encapsulated liquid. Therefore, a systematic analysis of the morphology of capsules consisting of a crosslinked polymer and a solvent was performed. Three classes of polymers such as polyurethane, polyurea and polyamide were chosen. Capsules made of these polymers and eight solvents of different polarity were synthesized via interfacial polymerization. It was shown that the morphology of the resulting capsules is specific for every polymer-solvent pair. Formation of capsules with three general types of morphology, such as core-shell, compact and multicompartment, was demonstrated by means of Scanning Electron Microscopy. Compact morphology was assumed to be a result of the specific polymer-solvent interactions and be analogues to the process of swelling. In order to verify the hypothesis, pure polyurethane, polyurea and polyamide were synthesized; their swelling behavior in the solvents used as the encapsulated material was investigated. It was shown that the swelling behavior of the polymers in most cases correlates with the capsules morphology. Different morphologies (compact, core-shell and multicompartment) were therefore attributed to the specific polymer-solvent interactions and discussed in terms of "good" and "poor" solvent. Capsules with core-shell morphology are formed when the encapsulated liquid is a "poor" solvent for the chosen polymer while compact morphologies are formed when the solvent is "good". Multicompartment morphology is explained by the formation of infinite networks or gelation of crosslinked polymers. If gelation occurs after the phase separation in the system is achieved, core-shell morphology is present. If gelation of the polymer occurs far before crosslinking is accomplished, further condensation of the polymer due to the crosslinking may lead to the formation of porous or multicompartment morphologies. It was concluded that in general, the morphology of capsules consisting of certain polymer-solvent pairs can be predicted on the basis of polymer-solvent behavior. In some cases, the swelling behavior and morphology may not match. The reasons for that are discussed in detail in the thesis. The discussed approach is only capable of predicting capsule morphology for certain polymer-solvent pairs. In practice, the design of the capsules assumes the trial of a great number of polymer-solvent combinations; more complex systems consisting of three, four or even more components are often used. Evaluation of the swelling behavior of each component pair of such systems becomes unreasonable. Therefore, exploitation of the solubility parameter approach was found to be more useful. The latter allows consideration of the properties of each single component instead of the pair of components. In such a manner, the Hansen Solubility Parameter (HSP) approach was used for further analysis. Solubility spheres were constructed for polyurethane, polyurea and polyamide. For this a three-dimensional graph is plotted with dispersion, polar and hydrogen bonding components of solubility parameter, obtained from literature, as the orthogonal axes. The HSP of the solvents are used as the coordinates for the points on the HSP graph. Then a sphere with a certain radius is located on a graph, and the "good" solvents would be located inside the sphere, while the "poor" ones are located outside. Both the location of the sphere center and the sphere radius should be fitted according to the information on polymer swelling behavior in a number of solvents. According to the existing correlation between the capsule morphology and swelling behavior of polymers, the solvents located inside the solubility sphere of a polymer give capsules with compact morphologies. The solvents located outside the solubility sphere of the solvent give either core-shell or multicompartment capsules in combination with the chosen polymer. Once the solubility sphere of a polymer is found, the solubility/swelling behavior is approximated to all possible substances. HSP theory allows therefore prediction of polymer solubility/swelling behavior and consequently the capsule morphology for any given substance with known HSP parameters on the basis of limited data. The latter makes the theory so attractive for application in chemistry and technology, since the choice of the system components is usually performed on the basis of a large number of different parameters that should mutually match. Even slight change of the technology sometimes leads to the necessity to find the analogue of this or that solvent in a sense of solvency but carrying different chemistry. Usage of the HSP approach in this case is indispensable. In the second part of the work examples of the HSP application for the fabrication of capsules with on-demand-morphology are presented. Capsules with compact or core-shell morphology containing corrosion inhibitors were synthesized. Thus, alkoxysilanes possessing long hydrophobic tail, combining passivating and water-repelling properties, were encapsulated in polyurethane shell. The mechanism of action of the active material required core-shell morphology of the capsules. The new hybrid corrosion inhibitor, cerium diethylhexyl phosphate, was encapsulated in polyamide shells in order to facilitate the dispersion of the substance and improve its adhesion to the coating matrix. The encapsulation of commercially available antifouling agents in polyurethane shells was carried out in order to control its release behavior and colloidal stability. Capsules with compact morphology made of polyurea containing the liquid corrosion inhibitor 2-methyl benzothiazole were synthesized in order to improve the colloidal stability of the substance. Capsules with compact morphology allow slower release of the liquid encapsulated material compared to the core-shell ones. If the "in-situ" encapsulation is not possible due to the reaction of the oil-soluble monomer with the encapsulated material, a solution was proposed: loading of the capsules should be performed after monomer deactivation due to the accomplishment of the polymerization reaction. Capsules of desired morphologies should be preformed followed by the loading step. In this way, compact polyurea capsules containing the highly effective but chemically active corrosion inhibitors 8-hydroxyquinoline and benzotriazole were fabricated. All the resulting capsules were successfully introduced into model coatings. The efficiency of the resulting "smart" self-healing anticorrosion coatings on steel and aluminium alloy of the AA-2024 series was evaluated using characterization techniques such as Scanning Vibrating Electron Spectroscopy, Electrochemical Impedance Spectroscopy and salt-spray chamber tests.}, language = {en} } @phdthesis{Muench2018, author = {M{\"u}nch, Thomas}, title = {Interpretation of temperature signals from ice cores}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414963}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 197}, year = {2018}, abstract = {Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1-500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.}, language = {en} } @phdthesis{Codutti2018, author = {Codutti, Agnese}, title = {Behavior of magnetic microswimmers}, doi = {10.25932/publishup-42297}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422976}, school = {Universit{\"a}t Potsdam}, pages = {iv, 142}, year = {2018}, abstract = {Microswimmers, i.e. swimmers of micron size experiencing low Reynolds numbers, have received a great deal of attention in the last years, since many applications are envisioned in medicine and bioremediation. A promising field is the one of magnetic swimmers, since magnetism is biocom-patible and could be used to direct or actuate the swimmers. This thesis studies two examples of magnetic microswimmers from a physics point of view. The first system to be studied are magnetic cells, which can be magnetic biohybrids (a swimming cell coupled with a magnetic synthetic component) or magnetotactic bacteria (naturally occurring bacteria that produce an intracellular chain of magnetic crystals). A magnetic cell can passively interact with external magnetic fields, which can be used for direction. The aim of the thesis is to understand how magnetic cells couple this magnetic interaction to their swimming strategies, mainly how they combine it with chemotaxis (the ability to sense external gradient of chemical species and to bias their walk on these gradients). In particular, one open question addresses the advantage given by these magnetic interactions for the magnetotactic bacteria in a natural environment, such as porous sediments. In the thesis, a modified Active Brownian Particle model is used to perform simulations and to reproduce experimental data for different systems such as bacteria swimming in the bulk, in a capillary or in confined geometries. I will show that magnetic fields speed up chemotaxis under special conditions, depending on parameters such as their swimming strategy (run-and-tumble or run-and-reverse), aerotactic strategy (axial or polar), and magnetic fields (intensities and orientations), but it can also hinder bacterial chemotaxis depending on the system. The second example of magnetic microswimmer are rigid magnetic propellers such as helices or random-shaped propellers. These propellers are actuated and directed by an external rotating magnetic field. One open question is how shape and magnetic properties influence the propeller behavior; the goal of this research field is to design the best propeller for a given situation. The aim of the thesis is to propose a simulation method to reproduce the behavior of experimentally-realized propellers and to determine their magnetic properties. The hydrodynamic simulations are based on the use of the mobility matrix. As main result, I propose a method to match the experimental data, while showing that not only shape but also the magnetic properties influence the propellers swimming characteristics.}, language = {en} } @phdthesis{Witt2018, author = {Witt, Tanja Ivonne}, title = {Camera Monitoring at volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421073}, school = {Universit{\"a}t Potsdam}, pages = {viii, 140}, year = {2018}, abstract = {Basaltic fissure eruptions, such as on Hawai'i or on Iceland, are thought to be driven by the lateral propagation of feeder dikes and graben subsidence. Associated solid earth processes, such as deformation and structural development, are well studied by means of geophysical and geodetic technologies. The eruptions themselves, lava fountaining and venting dynamics, in turn, have been much less investigated due to hazardous access, local dimension, fast processes, and resulting poor data availability. This thesis provides a detailed quantitative understanding of the shape and dynamics of lava fountains and the morphological changes at their respective eruption sites. For this purpose, I apply image processing techniques, including drones and fixed installed cameras, to the sequence of frames of video records from two well-known fissure eruptions in Hawai'i and Iceland. This way I extract the dimensions of multiple lava fountains, visible in all frames. By putting these results together and considering the acquisition times of the frames I quantify the variations in height, width and eruption velocity of the lava fountains. Then I analyse these time-series in both time and frequency domains and investigate the similarities and correlations between adjacent lava fountains. Following this procedure, I am able to link the dynamics of the individual lava fountains to physical parameters of the magma transport in the feeder dyke of the fountains. The first case study in this thesis focuses on the March 2011 Pu'u'O'o eruption, Hawai'i, where a continuous pulsating behaviour at all eight lava fountains has been observed. The lava fountains, even those from different parts of the fissure that are closely connected, show a similar frequency content and eruption behaviour. The regular pattern in the heights of lava fountain suggests a controlling process within the magma feeder system like a hydraulic connection in the underlying dyke, affecting or even controlling the pulsating behaviour. The second case study addresses the 2014-2015 Holuhraun fissure eruption, Iceland. In this case, the feeder dyke is highlighted by the surface expressions of graben-like structures and fault systems. At the eruption site, the activity decreases from a continuous line of fire of ~60 vents to a limited number of lava fountains. This can be explained by preferred upwards magma movements through vertical structures of the pre-eruptive morphology. Seismic tremors during the eruption reveal vent opening at the surface and/or pressure changes in the feeder dyke. The evolving topography of the cinder cones during the eruption interacts with the lava fountain behaviour. Local variations in the lava fountain height and width are controlled by the conduit diameter, the depth of the lava pond and the shape of the crater. Modelling of the fountain heights shows that long-term eruption behaviour is controlled mainly by pressure changes in the feeder dyke. This research consists of six chapters with four papers, including two first author and two co-author papers. It establishes a new method to analyse lava fountain dynamics by video monitoring. The comparison with the seismicity, geomorphologic and structural expressions of fissure eruptions shows a complex relationship between focussed flow through dykes, the morphology of the cinder cones, and the lava fountain dynamics at the vents of a fissure eruption.}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @phdthesis{Martin2013, author = {Martin, Benjamin}, title = {Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67001}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models.}, language = {en} } @phdthesis{Pons2023, author = {Pons, Micha{\"e}l}, title = {The Nature of the tectonic shortening in Central Andes}, doi = {10.25932/publishup-60089}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-600892}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2023}, abstract = {The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT. The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen. The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that "bulldozes" the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as "flat-slab conveyor". Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively.}, language = {en} } @phdthesis{Gruner2023, author = {Gruner, David}, title = {New frontiers in gyrochronology}, doi = {10.25932/publishup-61526}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615268}, school = {Universit{\"a}t Potsdam}, pages = {x, 131}, year = {2023}, abstract = {Late-type stars are by far the most frequent stars in the universe and of fundamental interest to various fields of astronomy - most notably to Galactic archaeology and exoplanet research. However, such stars barely change during their main sequence lifetime; their temperature, luminosity, or chemical composition evolve only very slowly over the course of billions of years. As such, it is difficult to obtain the age of such a star, especially when it is isolated and no other indications (like cluster association) can be used. Gyrochronology offers a way to overcome this problem. Stars, just like all other objects in the universe, rotate and the rate at which stars rotate impacts many aspects of their appearance and evolution. Gyrochronology leverages the observed rotation rate of a late-type main sequence star and its systematic evolution to estimate their ages. Unlike the above-mentioned parameters, the rotation rate of a main sequence star changes drastically throughout its main sequence lifetime; stars spin down. The youngest stars rotate every few hours, whereas much older stars rotate only about once a month, or - in the case of some late M-stars - once in a hundred days. Given that this spindown is systematic (with an additional mass dependence), it gave rise to the idea of using the observed rotation rate of a star (and its mass or a suitable proxy thereof) to estimate a star's age. This has been explored widely in young stellar open clusters but remains essentially unconstrained for stars older than the sun, and K and M stars older than 1 Gyr. This thesis focuses on the continued exploration of the spindown behavior to assess, whether gyrochronology remains applicable for stars of old ages, whether it is universal for late-type main sequence stars (including field stars), and to provide calibration mileposts for spindown models. To accomplish this, I have analyzed data from Kepler space telescope for the open clusters Ruprecht 147 (2.7 Gyr old) and M 67 (4 Gyr). Time series photometry data (light curves) were obtained for both clusters during Kepler's K2 mission. However, due to technical limitations and telescope malfunctions, extracting usable data from the K2 mission to identify (especially long) rotation periods requires extensive data preparation. For Ruprecht 147, I have compiled a list of about 300 cluster members from the literature and adopted preprocessed light curves from the Kepler archive where available. They have been cleaned of the gravest of data artifacts but still contained systematics. After correcting them for said artifacts, I was able to identify rotation periods in 31 of them. For M 67 more effort was taken. My work on Ruprecht 147 has shown the limitations imposed by the preselection of Kepler targets. Therefore, I adopted the time series full frame image directly and performed photometry on a much higher spatial resolution to be able to obtain data for as many stars as possible. This also means that I had to deal with the ubiquitous artifacts in Kepler data. For that, I devised a method that correlates the artificial flux variations with the ongoing drift of the telescope pointing in order to remove it. This process was a large success and I was able to create light curves whose quality match and even exceede those that were created by the Kepler mission - all while operating on higher spatial resolution and processing fainter stars. Ultimately, I was able to identify signs of periodic variability in the (created) light curves for 31 and 47 stars in Ruprecht 147 and M 67, respectively. My data connect well to bluer stars of cluster of the same age and extend for the first time to stars redder than early-K and older than 1 Gyr. The cluster data show a clear flattening in the distribution of Ruprecht 147 and even a downturn for M 67, resulting in a somewhat sinusoidal shape. With that, I have shown that the systematic spindown of stars continues at least until 4 Gyr and stars continue to live on a single surface in age-rotation periods-mass space which allows gyrochronology to be used at least up to that age. However, the shape of the spindown - as exemplified by the newly discovered sinusoidal shape of the cluster sequence - deviates strongly from the expectations. I then compiled an extensive sample of rotation data in open clusters - very much including my own work - and used the resulting cluster skeleton (with each cluster forming a rip in color-rotation period-mass space) to investigate if field stars follow the same spindown as cluster stars. For the field stars, I used wide binaries, which - with their shared origin and coevality - are in a sense the smallest possible open clusters. I devised an empirical method to evaluate the consistency between the rotation rates of the wide binary components and found that the vast majority of them are in fact consistent with what is observed in open clusters. This leads me to conclude that gyrochronology - calibrated on open clusters - can be applied to determine the ages of field stars.}, language = {en} } @phdthesis{Schifferle2024, author = {Schifferle, Lukas}, title = {Optical properties of (Mg,Fe)O at high pressure}, doi = {10.25932/publishup-62216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622166}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 90}, year = {2024}, abstract = {Large parts of the Earth's interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth's physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4\% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23\% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44-100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+.}, language = {en} } @phdthesis{Djalali2023, author = {Djalali, Saveh Arman}, title = {Multiresponsive complex emulsions: Concepts for the design of active and adaptive liquid colloidal systems}, doi = {10.25932/publishup-57520}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-575203}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2023}, abstract = {Complex emulsions are dispersions of kinetically stabilized multiphasic emulsion droplets comprised of two or more immiscible liquids that provide a novel material platform for the generation of active and dynamic soft materials. In recent years, the intrinsic reconfigurable morphological behavior of complex emulsions, which can be attributed to the unique force equilibrium between the interfacial tensions acting at the various interfaces, has become of fundamental and applied interest. As such, particularly biphasic Janus droplets have been investigated as structural templates for the generation of anisotropic precision objects, dynamic optical elements or as transducers and signal amplifiers in chemo- and bio-sensing applications. In the present thesis, switchable internal morphological responses of complex droplets triggered by stimuli-induced alterations of the balance of interfacial tensions have been explored as a universal building block for the design of multiresponsive, active, and adaptive liquid colloidal systems. A series of underlying principles and mechanisms that influence the equilibrium of interfacial tensions have been uncovered, which allowed the targeted design of emulsion bodies that can alter their shape, bind and roll on surfaces, or change their geometrical shape in response to chemical stimuli. Consequently, combinations of the unique triggerable behavior of Janus droplets with designer surfactants, such as a stimuli-responsive photosurfactant (AzoTAB) resulted for instance in shape-changing soft colloids that exhibited a jellyfish inspired buoyant motion behavior, holding great promise for the design of biological inspired active material architectures and transformable soft robotics. In situ observations of spherical Janus emulsion droplets using a customized side-view microscopic imaging setup with accompanying pendant dropt measurements disclosed the sensitivity regime of the unique chemical-morphological coupling inside complex emulsions and enabled the recording of calibration curves for the extraction of critical parameters of surfactant effectiveness. The deduced new "responsive drop" method permitted a convenient and cost-efficient quantification and comparison of the critical micelle concentrations (CMCs) and effectiveness of various cationic, anionic, and nonionic surfactants. Moreover, the method allowed insightful characterization of stimuli-responsive surfactants and monitoring of the impact of inorganic salts on the CMC and surfactant effectiveness of ionic and nonionic surfactants. Droplet functionalization with synthetic crown ether surfactants yielded a synthetically minimal material platform capable of autonomous and reversible adaptation to its chemical environment through different supramolecular host-guest recognition events. Addition of metal or ammonium salts resulted in the uptake of the resulting hydrophobic complexes to the hydrocarbon hemisphere, whereas addition of hydrophilic ammonium compounds such as amino acids or polypeptides resulted in supramolecular assemblies at the hydrocarbon-water interface of the droplets. The multiresponsive material platform enabled interfacial complexation and thus triggered responses of the droplets to a variety of chemical triggers including metal ions, ammonium compounds, amino acids, antibodies, carbohydrates as well as amino-functionalized solid surfaces. In the final chapter, the first documented optical logic gates and combinatorial logic circuits based on complex emulsions are presented. More specifically, the unique reconfigurable and multiresponsive properties of complex emulsions were exploited to realize droplet-based logic gates of varying complexity using different stimuli-responsive surfactants in combination with diverse readout methods. In summary, different designs for multiresponsive, active, and adaptive liquid colloidal systems were presented and investigated, enabling the design of novel transformative chemo-intelligent soft material platforms.}, language = {en} } @phdthesis{Kim2023, author = {Kim, Jiyong}, title = {Synthesis of InP quantum dots and their applications}, doi = {10.25932/publishup-58535}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585351}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 142}, year = {2023}, abstract = {Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100\%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD-LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694-850 nm yield the highest-ever PL QYs of 71.5-82.4\%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III-V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis-mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III-V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically.}, language = {en} } @phdthesis{Lepre2023, author = {Lepre, Enrico}, title = {Nitrogen-doped carbonaceous materials for energy and catalysis}, doi = {10.25932/publishup-57739}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577390}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2023}, abstract = {Facing the environmental crisis, new technologies are needed to sustain our society. In this context, this thesis aims to describe the properties and applications of carbon-based sustainable materials. In particular, it reports the synthesis and characterization of a wide set of porous carbonaceous materials with high nitrogen content obtained from nucleobases. These materials are used as cathodes for Li-ion capacitors, and a major focus is put on the cathode preparation, highlighting the oxidation resistance of nucleobase-derived materials. Furthermore, their catalytic properties for acid/base and redox reactions are described, pointing to the role of nitrogen speciation on their surfaces. Finally, these materials are used as supports for highly dispersed nickel loading, activating the materials for carbon dioxide electroreduction.}, language = {en} }