@phdthesis{Richter2022, author = {Richter, Maximilian Jacob Enzo Amandus}, title = {Continental rift dynamics across the scales}, doi = {10.25932/publishup-55060}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550606}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2022}, abstract = {Localisation of deformation is a ubiquitous feature in continental rift dynamics and observed across drastically different time and length scales. This thesis comprises one experimental and two numerical modelling studies investigating strain localisation in (1) a ductile shear zone induced by a material heterogeneity and (2) in an active continental rift setting. The studies are related by the fact that the weakening mechanisms on the crystallographic and grain size scale enable bulk rock weakening, which fundamentally enables the formation of shear zones, continental rifts and hence plate tectonics. Aiming to investigate the controlling mechanisms on initiation and evolution of a shear zone, the torsion experiments of the experimental study were conducted in a Patterson type apparatus with strong Carrara marble cylinders with a weak, planar Solnhofen limestone inclusion. Using state-of-the-art numerical modelling software, the torsion experiments were simulated to answer questions regarding localisation procedure like stress distribution or the impact of rheological weakening. 2D numerical models were also employed to integrate geophysical and geological data to explain characteristic tectonic evolution of the Southern and Central Kenya Rift. Key elements of the numerical tools are a randomized initial strain distribution and the usage of strain softening. During the torsion experiments, deformation begins to localise at the limestone inclusion tips in a process zone, which propagates into the marble matrix with increasing deformation until a ductile shear zone is established. Minor indicators for coexisting brittle deformation are found close to the inclusion tip and presumed to slightly facilitate strain localisation besides the dominant ductile deformation processes. The 2D numerical model of the torsion experiment successfully predicts local stress concentration and strain rate amplification ahead of the inclusion in first order agreement with the experimental results. A simple linear parametrization of strain weaking enables high accuracy reproduction of phenomenological aspects of the observed weakening. The torsion experiments suggest that loading conditions do not affect strain localisation during high temperature deformation of multiphase material with high viscosity contrasts. A numerical simulation can provide a way of analysing the process zone evolution virtually and extend the examinable frame. Furthermore, the nested structure and anastomosing shape of an ultramylonite band was mimicked with an additional second softening step. Rheological weakening is necessary to establish a shear zone in a strong matrix around a weak inclusion and for ultramylonite formation. Such strain weakening laws are also incorporated into the numerical models of the Southern and Central Kenya Rift that capture the characteristic tectonic evolution. A three-stage early rift evolution is suggested that starts with (1) the accommodation of strain by a single border fault and flexure of the hanging-wall crust, after which (2) faulting in the hanging-wall and the basin centre increases before (3) the early-stage asymmetry is lost and basinward localisation of deformation occurs. Along-strike variability of rifts can be produced by modifying the initial random noise distribution. In summary, the three studies address selected aspects of the broad range of mechanisms and processes that fundamentally enable the deformation of rock and govern the localisation patterns across the scales. In addition to the aforementioned results, the first and second manuscripts combined, demonstrate a procedure to find new or improve on existing numerical formulations for specific rheologies and their dynamic weakening. These formulations are essential in addressing rock deformation from the grain to the global scale. As within the third study of this thesis, where geodynamic controls on the evolution of a rift were examined and acquired by the integration of geological and geophysical data into a numerical model.}, language = {en} } @phdthesis{Hoffmann2011, author = {Hoffmann, Anne}, title = {Comparative aerosol studies based on multi-wavelength Raman LIDAR at Ny-{\AA}lesund, Spitsbergen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52426}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Arctic is a particularly sensitive area with respect to climate change due to the high surface albedo of snow and ice and the extreme radiative conditions. Clouds and aerosols as parts of the Arctic atmosphere play an important role in the radiation budget, which is, as yet, poorly quantified and understood. The LIDAR (Light Detection And Ranging) measurements presented in this PhD thesis contribute with continuous altitude resolved aerosol profiles to the understanding of occurrence and characteristics of aerosol layers above Ny-{\AA}lesund, Spitsbergen. The attention was turned to the analysis of periods with high aerosol load. As the Arctic spring troposphere exhibits maximum aerosol optical depths (AODs) each year, March and April of both the years 2007 and 2009 were analyzed. Furthermore, stratospheric aerosol layers of volcanic origin were analyzed for several months, subsequently to the eruptions of the Kasatochi and Sarychev volcanoes in summer 2008 and 2009, respectively. The Koldewey Aerosol Raman LIDAR (KARL) is an instrument for the active remote sensing of atmospheric parameters using pulsed laser radiation. It is operated at the AWIPEV research base and was fundamentally upgraded within the framework of this PhD project. It is now equipped with a new telescope mirror and new detection optics, which facilitate atmospheric profiling from 450m above sea level up to the mid-stratosphere. KARL provides highly resolved profiles of the scattering characteristics of aerosol and cloud particles (backscattering, extinction and depolarization) as well as water vapor profiles within the lower troposphere. Combination of KARL data with data from other instruments on site, namely radiosondes, sun photometer, Micro Pulse LIDAR, and tethersonde system, resulted in a comprehensive data set of scattering phenomena in the Arctic atmosphere. The two spring periods March and April 2007 and 2009 were at first analyzed based on meteorological parameters, like local temperature and relative humidity profiles as well as large scale pressure patterns and air mass origin regions. Here, it was not possible to find a clear correlation between enhanced AOD and air mass origin. However, in a comparison of two cloud free periods in March 2007 and April 2009, large AOD values in 2009 coincided with air mass transport through the central Arctic. This suggests the occurrence of aerosol transformation processes during the aerosol transport to Ny-{\AA}lesund. Measurements on 4 April 2009 revealed maximum AOD values of up to 0.12 and aerosol size distributions changing with altitude. This and other performed case studies suggest the differentiation between three aerosol event types and their origin: Vertically limited aerosol layers in dry air, highly variable hygroscopic boundary layer aerosols and enhanced aerosol load across wide portions of the troposphere. For the spring period 2007, the available KARL data were statistically analyzed using a characterization scheme, which is based on optical characteristics of the scattering particles. The scheme was validated using several case studies. Volcanic eruptions in the northern hemisphere in August 2008 and June 2009 arose the opportunity to analyze volcanic aerosol layers within the stratosphere. The rate of stratospheric AOD change was similar within both years with maximum values above 0.1 about three to five weeks after the respective eruption. In both years, the stratospheric AOD persisted at higher rates than usual until the measurements were stopped in late September due to technical reasons. In 2008, up to three aerosol layers were detected, the layer structure in 2009 was characterized by up to six distinct and thin layers which smeared out to one broad layer after about two months. The lowermost aerosol layer was continuously detected at the tropopause altitude. Three case studies were performed, all revealed rather large indices of refraction of m = (1.53-1.55) - 0.02i, suggesting the presence of an absorbing carbonaceous component. The particle radius, derived with inversion calculations, was also similar in both years with values ranging from 0.16 to 0.19 μm. However, in 2009, a second mode in the size distribution was detected at about 0.5 μm. The long term measurements with the Koldewey Aerosol Raman LIDAR in Ny-{\AA}lesund provide the opportunity to study Arctic aerosols in the troposphere and the stratosphere not only in case studies but on longer time scales. In this PhD thesis, both, tropospheric aerosols in the Arctic spring and stratospheric aerosols following volcanic eruptions have been described qualitatively and quantitatively. Case studies and comparative studies with data of other instruments on site allowed for the analysis of microphysical aerosol characteristics and their temporal evolution.}, language = {en} } @phdthesis{Hoffmann2007, author = {Hoffmann, Toni}, title = {Cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O'Kane and Al'Shehbaz and Arabidopsis thaliana (L.) Heynhold}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15259}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Being living systems unable to adjust their location to changing environmental conditions, plants display homeostatic networks that have evolved to maintain transition metal levels in a very narrow concentration range in order to avoid either deficiency or toxicity. Hence, plants possess a broad repertoire of mechanisms for the cellular uptake, compartmentation and efflux, as well as for the chelation of transition metal ions. A small number of plants are hypertolerant to one or a few specific transition metals. Some metal tolerant plants are also able to hyperaccumulate metal ions. The Brassicaceae family member Arabidopis halleri ssp. halleri (L.) O´KANE and AL´SHEHBAZ is a hyperaccumulator of zinc (Zn), and it is closely related to the non-hypertolerant and non-hyperaccumulating model plant Arabidopsis thaliana (L.) HEYNHOLD. The close relationship renders A. halleri a promising emerging model plant for the comparative investigation of the molecular mechanisms behind hypertolerance and hyperaccumulation. Among several potential candidate genes that are probably involved in mediating the zinc-hypertolerant and zinc-hyperaccumulating trait is AhHMA3. The AhHMA3 gene is highly similar to AtHMA3 (AGI number: At4g30120) in A. thaliana, and its encoded protein belongs to the P-type IB ATPase family of integral membrane transporter proteins that transport transition metals. In contrast to the low AtHMA3 transcript levels in A. thaliana, the gene was found to be constitutively highly expressed across different Zn treatments in A. halleri, especially in shoots. In this study, the cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O´KANE and AL´SHEHBAZ and Arabidopsis thaliana (L.) HEYNHOLD is described. Heterologously expressed AhHMA3 mediated enhanced tolerance to Zn and to a much lesser degree to cadmium (Cd) but not to cobalt (Co) in metal-sensitive mutant strains of budding yeast. It is demonstrated that the genome of A. halleri contains at least four copies of AhHMA3, AhHMA3-1 to AhHMA3-4. A copy-specific real-time RT-PCR indicated that an AhHMA3-1 related gene copy is the source of the constitutively high transcript level in A. halleri and not a gene copy similar to AhHMA3-2 or AhHMA3-4. In accordance with the enhanced AtHMA3mRNA transcript level in A. thaliana roots, an AtHMA3 promoter-GUS gene construct mediated GUS activity predominantly in the vascular tissues of roots and not in shoots. However, the observed AhHMA3-1 and AhHMA3-2 promoter-mediated GUS activity in A. thaliana or A. halleri plants did not reflect the constitutively high expression of AhHMA3 in shoots of A. halleri. It is suggested that other factors e. g. characteristic sequence inserts within the first intron of AhHMA3-1 might enable a constitutively high expression. Moreover, the unknown promoter of the AhHMA3-3 gene copy could be the source of the constitutively high AhHMA3 transcript levels in A. halleri. In that case, the AhHMA3-3 sequence is predicted to be highly homologous to AhHMA3-1. The lack of solid localisation data for the AhHMA3 protein prevents a clear functional assignment. The provided data suggest several possible functions of the AhHMA3 protein: Like AtHMA2 and AtHMA4 it might be localised to the plasma membrane and could contribute to the efficient translocation of Zn from root to shoot and/or to the cell-to-cell distribution of Zn in the shoot. If localised to the vacuolar membrane, then a role in maintaining a low cytoplasmic zinc concentration by vacuolar zinc sequestration is possible. In addition, AhHMA3 might be involved in the delivery of zinc ions to trichomes and mesophyll leaf cells that are major zinc storage sites in A. halleri.}, language = {en} } @phdthesis{Holsten2013, author = {Holsten, Anne}, title = {Climate change vulnerability assessments in the regional context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66836}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Adapting sectors to new conditions under climate change requires an understanding of regional vulnerabilities. Conceptually, vulnerability is defined as a function of sensitivity and exposure, which determine climate impacts, and adaptive capacity of a system. Vulnerability assessments for quantifying these components have become a key tool within the climate change field. However, there is a disagreement on how to make the concept operational in studies from a scientific perspective. This conflict leads to many still unsolved challenges, especially regarding the quantification and aggregation of the components and their suitable level of complexity. This thesis therefore aims at advancing the scientific foundation of such studies by translating the concept of vulnerability into a systematic assessment structure. This includes all components and implies that for each considered impact (e.g. flash floods) a clear sensitive entity is defined (e.g. settlements) and related to a direction of change for a specific climatic stimulus (e.g. increasing impact due to increasing days with heavy precipitation). Regarding the challenging aggregation procedure, two alternative methods allowing a cross-sectoral overview are introduced and their advantages and disadvantages discussed. This assessment structure is subsequently exemplified for municipalities of the German state North Rhine-Westphalia via an indicator-based deductive approach using information from literature. It can be transferred also to other regions. As for many relevant sectors, suitable indicators to express the vulnerability components are lacking, new quantification methods are developed and applied in this thesis, for example for the forestry and health sector. A lack of empirical data on relevant thresholds is evident, for example which climatic changes would cause significant impacts. Consequently, the multi-sectoral study could only provide relative measures for each municipality, in relation to the region. To fill this gap, an exemplary sectoral study was carried out on windthrow impacts in forests to provide an absolute quantification of the present and future impact. This is achieved by formulating an empirical relation between the forest characteristics and damage based on data from a past storm event. The resulting measure indicating the sensitivity is then combined with wind conditions. Multi-sectoral vulnerability assessments require considerable resources, which often hinders the implementation. Thus, in a next step, the potential for reducing the complexity is explored. To predict forest fire occurrence, numerous meteorological indices are available, spanning over a range of complexity. Comparing their performance, the single variable relative humidity outperforms complex indicators for most German states in explaining the monthly fire pattern. This is the case albeit it is itself an input factor in most indices. Thus, this meteorological factor alone is well suited to evaluate forest fire danger in many Germany regions and allows a resource-efficient assessment. Similarly, the complexity of methods is assessed regarding the application of the ecohydrological model SWIM to the German region of Brandenburg. The inter-annual soil moisture levels simulated by this model can only poorly be represented by simpler statistical approach using the same input data. However, on a decadal time horizon, the statistical approach shows a good performance and a strong dominance of the soil characteristic field capacity. This points to a possibility to reduce the input factors for predicting long-term averages, but the results are restricted by a lack of empirical data on soil water for validation. The presented assessments of vulnerability and its components have shown that they are still a challenging scientific undertaking. Following the applied terminology, many problems arise when implementing it for regional studies. Advances in addressing shortcomings of previous studies have been made by constructing a new systematic structure for characterizing and aggregating vulnerability components. For this, multiple approaches were presented, but they have specific advantages and disadvantages, which should also be carefully considered in future studies. There is a potential to simplify some methods, but more systematic assessments on this are needed. Overall, this thesis strengthened the use of vulnerability assessments as a tool to support adaptation by enhancing their scientific basis.}, language = {en} } @phdthesis{Oey2008, author = {Oey, Melanie}, title = {Chloroplasts as bioreactors : high-yield production of active bacteriolytic protein antibiotics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-28950}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Plants, more precisely their chloroplasts with their bacterial-like expression machinery inherited from their cyanobacterial ancestors, can potentially offer a cheap expression system for proteinaceous pharmaceuticals. This system would be easily scalable and provides appropriate safety due to chloroplasts maternal inheritance. In this work, it was shown that three phage lytic enzymes (Pal, Cpl-1 and PlyGBS) could be successfully expressed at very high levels and with high stability in tobacco chloroplasts. PlyGBS expression reached an amount of foreign protein accumulation (> 70\% TSP) that has never been obtained before. Although the high expression levels of PlyGBS caused a pale green phenotype with retarded growth, presumably due to exhaustion of plastid protein synthesis capacity, development and seed production were not impaired under greenhouse conditions. Since Pal and Cpl-1 showed toxic effects when expressed in E. coli, a special plastid transformation vector (pTox) was constructed to allow DNA amplification in bacteria. The construction of the pTox transformation vector allowing a recombinase-mediated deletion of an E. coli transcription block in the chloroplast, leading to an increase of foreign protein accumulation to up to 40\% of TSP for Pal and 20\% of TSP for Cpl-1. High dose-dependent bactericidal efficiency was shown for all three plant-derived lytic enzymes using their pathogenic target bacteria S. pyogenes and S. pneumoniae. Confirmation of specificity was obtained for the endotoxic proteins Pal and Cpl-1 by application to E. coli cultures. These results establish tobacco chloroplasts as a new cost-efficient and convenient production platform for phage lytic enzymes and address the greatest obstacle for clinical application. The present study is the first report of lysin production in a non-bacterial system. The properties of chloroplast-produced lysins described in this work, their stability, high accumulation rate and biological activity make them highly attractive candidates for future antibiotics.}, language = {en} } @phdthesis{Bierbaum2011, author = {Bierbaum, Veronika}, title = {Chemomechanical coupling and motor cycles of the molecular motor myosin V}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53614}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the living cell, the organization of the complex internal structure relies to a large extent on molecular motors. Molecular motors are proteins that are able to convert chemical energy from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Being about 10 to 100 nanometers in size, the molecules act on a length scale, for which thermal collisions have a considerable impact onto their motion. In this way, they constitute paradigmatic examples of thermodynamic machines out of equilibrium. This study develops a theoretical description for the energy conversion by the molecular motor myosin V, using many different aspects of theoretical physics. Myosin V has been studied extensively in both bulk and single molecule experiments. Its stepping velocity has been characterized as a function of external control parameters such as nucleotide concentration and applied forces. In addition, numerous kinetic rates involved in the enzymatic reaction of the molecule have been determined. For forces that exceed the stall force of the motor, myosin V exhibits a 'ratcheting' behaviour: For loads in the direction of forward stepping, the velocity depends on the concentration of ATP, while for backward loads there is no such influence. Based on the chemical states of the motor, we construct a general network theory that incorporates experimental observations about the stepping behaviour of myosin V. The motor's motion is captured through the network description supplemented by a Markov process to describe the motor dynamics. This approach has the advantage of directly addressing the chemical kinetics of the molecule, and treating the mechanical and chemical processes on equal grounds. We utilize constraints arising from nonequilibrium thermodynamics to determine motor parameters and demonstrate that the motor behaviour is governed by several chemomechanical motor cycles. In addition, we investigate the functional dependence of stepping rates on force by deducing the motor's response to external loads via an appropriate Fokker-Planck equation. For substall forces, the dominant pathway of the motor network is profoundly different from the one for superstall forces, which leads to a stepping behaviour that is in agreement with the experimental observations. The extension of our analysis to Markov processes with absorbing boundaries allows for the calculation of the motor's dwell time distributions. These reveal aspects of the coordination of the motor's heads and contain direct information about the backsteps of the motor. Our theory provides a unified description for the myosin V motor as studied in single motor experiments.}, language = {en} } @phdthesis{Brauer2016, author = {Brauer, Doroth{\´e}e}, title = {Chemo-kinematic constraints on Milky Way models from the spectroscopic surveys SEGUE \& RAVE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403968}, school = {Universit{\"a}t Potsdam}, pages = {vii, 197}, year = {2016}, abstract = {The Milky Way is only one out of billions of galaxies in the universe. However, it is a special galaxy because it allows to explore the main mechanisms involved in its evolution and formation history by unpicking the system star-by-star. Especially, the chemical fingerprints of its stars provide clues and evidence of past events in the Galaxy's lifetime. These information help not only to decipher the current structure and building blocks of the Milky Way, but to learn more about the general formation process of galaxies. In the past decade a multitude of stellar spectroscopic Galactic surveys have scanned millions of stars far beyond the rim of the solar neighbourhood. The obtained spectroscopic information provide unprecedented insights to the chemo-dynamics of the Milky Way. In addition analytic models and numerical simulations of the Milky Way provide necessary descriptions and predictions suited for comparison with observations in order to decode the physical properties that underlie the complex system of the Galaxy. In the thesis various approaches are taken to connect modern theoretical modelling of galaxy formation and evolution with observations from Galactic stellar surveys. With its focus on the chemo-kinematics of the Galactic disk this work aims to determine new observational constraints on the formation of the Milky Way providing also proper comparisons with two different models. These are the population synthesis model TRILEGAL based on analytical distribution functions, which aims to simulate the number and distribution of stars in the Milky Way and its different components, and a hybrid model (MCM) that combines an N-body simulation of a Milky Way like galaxy in the cosmological framework with a semi-analytic chemical evolution model for the Milky Way. The major observational data sets in use come from two surveys, namely the "Radial Velocity Experiment" (RAVE) and the "Sloan Extension for Galactic Understanding and Exploration" (SEGUE). In the first approach the chemo-kinematic properties of the thin and thick disk of the Galaxy as traced by a selection of about 20000 SEGUE G-dwarf stars are directly compared to the predictions by the MCM model. As a necessary condition for this, SEGUE's selection function and its survey volume are evaluated in detail to correct the spectroscopic observations for their survey specific selection biases. Also, based on a Bayesian method spectro-photometric distances with uncertainties below 15\% are computed for the selection of SEGUE G-dwarfs that are studied up to a distance of 3 kpc from the Sun. For the second approach two synthetic versions of the SEGUE survey are generated based on the above models. The obtained synthetic stellar catalogues are then used to create mock samples best resembling the compiled sample of observed SEGUE G-dwarfs. Generally, mock samples are not only ideal to compare predictions from various models. They also allow validation of the models' quality and improvement as with this work could be especially achieved for TRILEGAL. While TRILEGAL reproduces the statistical properties of the thin and thick disk as seen in the observations, the MCM model has shown to be more suitable in reproducing many chemo-kinematic correlations as revealed by the SEGUE stars. However, evidence has been found that the MCM model may be missing a stellar component with the properties of the thick disk that the observations clearly show. While the SEGUE stars do indicate a thin-thick dichotomy of the stellar Galactic disk in agreement with other spectroscopic stellar studies, no sign for a distinct metal-poor disk is seen in the MCM model. Usually stellar spectroscopic surveys are limited to a certain volume around the Sun covering different regions of the Galaxy's disk. This often prevents to obtain a global view on the chemo-dynamics of the Galactic disk. Hence, a suitable combination of stellar samples from independent surveys is not only useful for the verification of results but it also helps to complete the picture of the Milky Way. Therefore, the thesis closes with a comparison of the SEGUE G-dwarfs and a sample of RAVE giants. The comparison reveals that the chemo-kinematic relations agree in disk regions where the samples of both surveys show a similar number of stars. For those parts of the survey volumes where one of the surveys lacks statistics they beautifully complement each other. This demonstrates that the comparison of theoretical models on the one side, and the combined observational data gathered by multiple surveys on the other side, are key ingredients to understand and disentangle the structure and formation history of the Milky Way.}, language = {en} } @phdthesis{Unterstab2005, author = {Unterstab, Gunhild}, title = {Charakterisierung der viralen Genprodukte p10 und P des Borna Disease Virus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6905}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Das Borna Disease Virus (BDV, Bornavirus) besitzt ein einzelstr{\"a}ngiges RNA-Genom negativer Polarit{\"a}t und ist innerhalb der Ordnung Mononegavirales der Prototyp einer eigenen Virusfamilie, die der Bornaviridae. Eine außergew{\"o}hnliche Eigenschaft des Virus ist seine nukle{\"a}re Transkription und Replikation, eine weitere besteht in seiner F{\"a}higkeit, als neurotropes Virus sowohl in vivo als auch in vitro persistente Infektionen zu etablieren. Die zugrunde liegenden Mechanismen sowohl der Replikation als auch der Persistenz sind derzeit noch unzureichend verstanden, auch deshalb, weil das Virus noch relativ „jung" ist: Erste komplette Sequenzen des RNA-Genoms wurden 1994 publiziert und erst vor einigen Monaten gelang die Generierung rekombinanter Viren auf der Basis klonierter cDNA. Im Mittelpunkt dieser Arbeit standen das p10 Protein und das Phosphoprotein (P), die von der gemeinsamen Transkriptionseinheit II in {\"u}berlappenden Leserahmen kodiert werden. Als im Kern der Wirtszelle replizierendes Virus ist das Bornavirus auf zellul{\"a}re Importmechanismen angewiesen, um den Kernimport aller an der Replikation beteiligten viralen Proteine zu gew{\"a}hrleisten. Das p10 Protein ist ein negativer Regulator der viralen RNA-abh{\"a}ngigen RNA-Polymerase (L). In vitro Importexperimente zeigten, dass p10 {\"u}ber den klassischen Importin alpha/beta abh{\"a}ngigen Kernimportweg in den Nukleus transportiert wird. Dies war unerwartet, da p10 kein vorhersagbares klassisches Kernlokalisierungssignal (NLS) besitzt und weist darauf hin, dass der zellul{\"a}re Importapparat offensichtlich flexibler ist als allgemein angenommen. Die ersten 20 N-terminalen AS vermitteln sowohl Kernimport als auch die Bindung an den Importrezeptor Importin alpha. Durch Di-Alanin-Austauschmutagenese wurden die f{\"u}r diesen Transportprozess essentiellen AS identifiziert und die Bedeutung hydrophober und polarer AS-Reste demonstriert. Die F{\"a}higkeit des Bornavirus, persistente Infektionen zu etablieren, wirft die Frage auf, wie das Virus die zellul{\"a}ren antiviralen Abwehrmechanismen, insbesondere das Typ I Interferon (IFN)-System, unterwandert. Das virale P Protein wurde in dieser Arbeit als potenter Antagonist der IFN-Induktion charakterisiert. Es verhindert die Phosphorylierung des zentralen Transkriptionsfaktors IRF3 durch die zellul{\"a}re Kinase TBK1 und somit dessen Aktivierung. Der Befund, dass P mit TBK1 Komplexe bildet und zudem auch als Substrat f{\"u}r die zellul{\"a}re Kinase fungiert, erlaubt es, erstmalig einen Mechanismus zu postulieren, in dem ein virales Protein (BDV-P) als putatives TBK1-Pseudosubstrat die IRF3-Aktivierung kompetitiv hemmt.}, subject = {Interferon }, language = {de} } @phdthesis{Kruse2023, author = {Kruse, Marlen}, title = {Characterization of biomolecules and their interactions using electrically controllable DNA nanolevers}, doi = {10.25932/publishup-57738}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577384}, school = {Universit{\"a}t Potsdam}, pages = {100, xxii}, year = {2023}, abstract = {In this work, binding interactions between biomolecules were analyzed by a technique that is based on electrically controllable DNA nanolevers. The technique was applied to virus-receptor interactions for the first time. As receptors, primarily peptides on DNA nanostructures and antibodies were utilized. The DNA nanostructures were integrated into the measurement technique and enabled the presentation of the peptides in a controllable geometrical order. The number of peptides could be varied to be compatible to the binding sites of the viral surface proteins. Influenza A virus served as a model system, on which the general measurability was demonstrated. Variations of the receptor peptide, the surface ligand density, the measurement temperature and the virus subtypes showed the sensitivity and applicability of the technology. Additionally, the immobilization of virus particles enabled the measurement of differences in oligovalent binding of DNA-peptide nanostructures to the viral proteins in their native environment. When the coronavirus pandemic broke out in 2020, work on binding interactions of a peptide from the hACE2 receptor and the spike protein of the SARS-CoV-2 virus revealed that oligovalent binding can be quantified in the switchSENSE technology. It could also be shown that small changes in the amino acid sequence of the spike protein resulted in complete loss of binding. Interactions of the peptide and inactivated virus material as well as pseudo virus particles could be measured. Additionally, the switchSENSE technology was utilized to rank six antibodies for their binding affinity towards the nucleocapsid protein of SARS-CoV-2 for the development of a rapid antigen test device. The technique was furthermore employed to show binding of a non-enveloped virus (adenovirus) and a virus-like particle (norovirus-like particle) to antibodies. Apart from binding interactions, the use of DNA origami levers with a length of around 50 nm enabled the switching of virus material. This proved that the technology is also able to size objects with a hydrodynamic diameter larger than 14 nm. A theoretical work on diffusion and reaction-limited binding interactions revealed that the technique and the chosen parameters enable the determination of binding rate constants in the reaction-limited regime. Overall, the applicability of the switchSENSE technique to virus-receptor binding interactions could be demonstrated on multiple examples. While there are challenges that remain, the setup enables the determination of affinities between viruses and receptors in their native environment. Especially the possibilities regarding the quantification of oligo- and multivalent binding interactions could be presented.}, language = {en} } @phdthesis{Breitenbach2009, author = {Breitenbach, Sebastian Franz Martin}, title = {Changes in monsoonal precipitation and atmospheric circulation during the Holocene reconstructed from stalagmites from Northeastern India}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37807}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Recent years witnessed a vast advent of stalagmites as palaeoclimate archives. The multitude of geochemical and physical proxies and a promise of a precise and accurate age model greatly appeal to palaeoclimatologists. Although substantial progress was made in speleothem-based palaeoclimate research and despite high-resolution records from low-latitudinal regions, proving that palaeo-environmental changes can be archived on sub-annual to millennial time scales our comprehension of climate dynamics is still fragmentary. This is in particular true for the summer monsoon system on the Indian subcontinent. The Indian summer monsoon (ISM) is an integral part of the intertropical convergence zone (ITCZ). As this rainfall belt migrates northward during boreal summer, it brings monsoonal rainfall. ISM strength depends however on a variety of factors, including snow cover in Central Asia and oceanic conditions in the Indic and Pacific. Presently, many of the factors influencing the ISM are known, though their exact forcing mechanism and mutual relations remain ambiguous. Attempts to make an accurate prediction of rainfall intensity and frequency and drought recurrence, which is extremely important for South Asian countries, resemble a puzzle game; all interaction need to fall into the right place to obtain a complete picture. My thesis aims to create a faithful picture of climate change in India, covering the last 11,000 ka. NE India represents a key region for the Bay of Bengal (BoB) branch of the ISM, as it is here where the monsoon splits into a northwestward and a northeastward directed arm. The Meghalaya Plateau is the first barrier for northward moving air masses and receives excessive summer rainfall, while the winter season is very dry. The proximity of Meghalaya to the Tibetan Plateau on the one hand and the BoB on the other hand make the study area a key location for investigating the interaction between different forcings that governs the ISM. A basis for the interpretation of palaeoclimate records, and a first important outcome of my thesis is a conceptual model which explains the observed pattern of seasonal changes in stable isotopes (d18O and d2H) in rainfall. I show that although in tropical and subtropical regions the amount effect is commonly called to explain strongly depleted isotope values during enhanced rainfall, alone it cannot account for observed rainwater isotope variability in Meghalaya. Monitoring of rainwater isotopes shows no expected negative correlation between precipitation amount and d18O of rainfall. In turn I find evidence that the runoff from high elevations carries an inherited isotopic signature into the BoB, where during the ISM season the freshwater builds a strongly depleted plume on top of the marine water. The vapor originating from this plume is likely to memorize' and transmit further very negative d18O values. The lack of data does not allow for quantication of this plume effect' on isotopes in rainfall over Meghalaya but I suggest that it varies on seasonal to millennial timescales, depending on the runoff amount and source characteristics. The focal point of my thesis is the extraction of climatic signals archived in stalagmites from NE India. High uranium concentration in the stalagmites ensured excellent age control required for successful high-resolution climate reconstructions. Stable isotope (d18O and d13C) and grey-scale data allow unprecedented insights into millennial to seasonal dynamics of the summer and winter monsoon in NE India. ISM strength (i. e. rainfall amount) is recorded in changes in d18Ostalagmites. The d13C signal, reflecting drip rate changes, renders a powerful proxy for dry season conditions, and shows similarities to temperature-related changes on the Tibetan Plateau. A sub-annual grey-scale profile supports a concept of lower drip rate and slower stalagmite growth during dry conditions. During the Holocene, ISM followed a millennial-scale decrease of insolation, with decadal to centennial failures resulting from atmospheric changes. The period of maximum rainfall and enhanced seasonality corresponds to the Holocene Thermal Optimum observed in Europe. After a phase of rather stable conditions, 4.5 kyr ago, the strengthening ENSO system dominated the ISM. Strong El Nino events weakened the ISM, especially when in concert with positive Indian Ocean dipole events. The strongest droughts of the last 11 kyr are recorded during the past 2 kyr. Using the advantage of a well-dated stalagmite record at hand I tested the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect sub-annual to sub-decadal changes in element concentrations in stalagmites. The development of a large ablation cell allows for ablating sample slabs of up to 22 cm total length. Each analyzed element is a potential proxy for different climatic parameters. Combining my previous results with the LAICP- MS-generated data shows that element concentration depends not only on rainfall amount and associated leaching from the soil. Additional factors, like biological activity and hydrogeochemical conditions in the soil and vadose zone can eventually affect the element content in drip water and in stalagmites. I present a theoretical conceptual model for my study site to explain how climatic signals can be transmitted and archived in stalagmite carbonate. Further, I establish a first 1500 year long element record, reconstructing rainfall variability. Additionally, I hypothesize that volcanic eruptions, producing large amounts of sulfuric acid, can influence soil acidity and hence element mobilization.}, language = {en} } @phdthesis{Galushchinskiy2023, author = {Galushchinskiy, Alexey}, title = {Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis}, doi = {10.25932/publishup-61092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610923}, school = {Universit{\"a}t Potsdam}, pages = {351}, year = {2023}, abstract = {Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered.}, language = {en} } @phdthesis{Witt2018, author = {Witt, Tanja Ivonne}, title = {Camera Monitoring at volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421073}, school = {Universit{\"a}t Potsdam}, pages = {viii, 140}, year = {2018}, abstract = {Basaltic fissure eruptions, such as on Hawai'i or on Iceland, are thought to be driven by the lateral propagation of feeder dikes and graben subsidence. Associated solid earth processes, such as deformation and structural development, are well studied by means of geophysical and geodetic technologies. The eruptions themselves, lava fountaining and venting dynamics, in turn, have been much less investigated due to hazardous access, local dimension, fast processes, and resulting poor data availability. This thesis provides a detailed quantitative understanding of the shape and dynamics of lava fountains and the morphological changes at their respective eruption sites. For this purpose, I apply image processing techniques, including drones and fixed installed cameras, to the sequence of frames of video records from two well-known fissure eruptions in Hawai'i and Iceland. This way I extract the dimensions of multiple lava fountains, visible in all frames. By putting these results together and considering the acquisition times of the frames I quantify the variations in height, width and eruption velocity of the lava fountains. Then I analyse these time-series in both time and frequency domains and investigate the similarities and correlations between adjacent lava fountains. Following this procedure, I am able to link the dynamics of the individual lava fountains to physical parameters of the magma transport in the feeder dyke of the fountains. The first case study in this thesis focuses on the March 2011 Pu'u'O'o eruption, Hawai'i, where a continuous pulsating behaviour at all eight lava fountains has been observed. The lava fountains, even those from different parts of the fissure that are closely connected, show a similar frequency content and eruption behaviour. The regular pattern in the heights of lava fountain suggests a controlling process within the magma feeder system like a hydraulic connection in the underlying dyke, affecting or even controlling the pulsating behaviour. The second case study addresses the 2014-2015 Holuhraun fissure eruption, Iceland. In this case, the feeder dyke is highlighted by the surface expressions of graben-like structures and fault systems. At the eruption site, the activity decreases from a continuous line of fire of ~60 vents to a limited number of lava fountains. This can be explained by preferred upwards magma movements through vertical structures of the pre-eruptive morphology. Seismic tremors during the eruption reveal vent opening at the surface and/or pressure changes in the feeder dyke. The evolving topography of the cinder cones during the eruption interacts with the lava fountain behaviour. Local variations in the lava fountain height and width are controlled by the conduit diameter, the depth of the lava pond and the shape of the crater. Modelling of the fountain heights shows that long-term eruption behaviour is controlled mainly by pressure changes in the feeder dyke. This research consists of six chapters with four papers, including two first author and two co-author papers. It establishes a new method to analyse lava fountain dynamics by video monitoring. The comparison with the seismicity, geomorphologic and structural expressions of fissure eruptions shows a complex relationship between focussed flow through dykes, the morphology of the cinder cones, and the lava fountain dynamics at the vents of a fissure eruption.}, language = {en} } @phdthesis{Zhou2022, author = {Zhou, Shuo}, title = {Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young's modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young's modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young's modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity.}, language = {en} } @phdthesis{Mueller2008, author = {M{\"u}ller, Melanie J. I.}, title = {Bidirectional transport by molecular motors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18715}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {In biological cells, the long-range intracellular traffic is powered by molecular motors which transport various cargos along microtubule filaments. The microtubules possess an intrinsic direction, having a 'plus' and a 'minus' end. Some molecular motors such as cytoplasmic dynein walk to the minus end, while others such as conventional kinesin walk to the plus end. Cells typically have an isopolar microtubule network. This is most pronounced in neuronal axons or fungal hyphae. In these long and thin tubular protrusions, the microtubules are arranged parallel to the tube axis with the minus ends pointing to the cell body and the plus ends pointing to the tip. In such a tubular compartment, transport by only one motor type leads to 'motor traffic jams'. Kinesin-driven cargos accumulate at the tip, while dynein-driven cargos accumulate near the cell body. We identify the relevant length scales and characterize the jamming behaviour in these tube geometries by using both Monte Carlo simulations and analytical calculations. A possible solution to this jamming problem is to transport cargos with a team of plus and a team of minus motors simultaneously, so that they can travel bidirectionally, as observed in cells. The presumably simplest mechanism for such bidirectional transport is provided by a 'tug-of-war' between the two motor teams which is governed by mechanical motor interactions only. We develop a stochastic tug-of-war model and study it with numerical and analytical calculations. We find a surprisingly complex cooperative motility behaviour. We compare our results to the available experimental data, which we reproduce qualitatively and quantitatively.}, language = {en} } @phdthesis{Codutti2018, author = {Codutti, Agnese}, title = {Behavior of magnetic microswimmers}, doi = {10.25932/publishup-42297}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422976}, school = {Universit{\"a}t Potsdam}, pages = {iv, 142}, year = {2018}, abstract = {Microswimmers, i.e. swimmers of micron size experiencing low Reynolds numbers, have received a great deal of attention in the last years, since many applications are envisioned in medicine and bioremediation. A promising field is the one of magnetic swimmers, since magnetism is biocom-patible and could be used to direct or actuate the swimmers. This thesis studies two examples of magnetic microswimmers from a physics point of view. The first system to be studied are magnetic cells, which can be magnetic biohybrids (a swimming cell coupled with a magnetic synthetic component) or magnetotactic bacteria (naturally occurring bacteria that produce an intracellular chain of magnetic crystals). A magnetic cell can passively interact with external magnetic fields, which can be used for direction. The aim of the thesis is to understand how magnetic cells couple this magnetic interaction to their swimming strategies, mainly how they combine it with chemotaxis (the ability to sense external gradient of chemical species and to bias their walk on these gradients). In particular, one open question addresses the advantage given by these magnetic interactions for the magnetotactic bacteria in a natural environment, such as porous sediments. In the thesis, a modified Active Brownian Particle model is used to perform simulations and to reproduce experimental data for different systems such as bacteria swimming in the bulk, in a capillary or in confined geometries. I will show that magnetic fields speed up chemotaxis under special conditions, depending on parameters such as their swimming strategy (run-and-tumble or run-and-reverse), aerotactic strategy (axial or polar), and magnetic fields (intensities and orientations), but it can also hinder bacterial chemotaxis depending on the system. The second example of magnetic microswimmer are rigid magnetic propellers such as helices or random-shaped propellers. These propellers are actuated and directed by an external rotating magnetic field. One open question is how shape and magnetic properties influence the propeller behavior; the goal of this research field is to design the best propeller for a given situation. The aim of the thesis is to propose a simulation method to reproduce the behavior of experimentally-realized propellers and to determine their magnetic properties. The hydrodynamic simulations are based on the use of the mobility matrix. As main result, I propose a method to match the experimental data, while showing that not only shape but also the magnetic properties influence the propellers swimming characteristics.}, language = {en} } @phdthesis{Bajerski2013, author = {Bajerski, Felizitas}, title = {Bacterial communities in glacier forefields of the Larsemann Hills, East Antarctica : structure, development \& adaptation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67424}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Antarctic glacier forfields are extreme environments and pioneer sites for ecological succession. The Antarctic continent shows microbial community development as a natural laboratory because of its special environment, geographic isolation and little anthropogenic influence. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats and new terrain is becoming exposed to soil formation and accessible for microbial colonisation. This study aims to understand the structure and development of glacier forefield bacterial communities, especially how soil parameters impact the microorganisms and how those are adapted to the extreme conditions of the habitat. To this effect, a combination of cultivation experiments, molecular, geophysical and geochemical analysis was applied to examine two glacier forfields of the Larsemann Hills, East Antarctica. Culture-independent molecular tools such as terminal restriction length polymorphism (T-RFLP), clone libraries and quantitative real-time PCR (qPCR) were used to determine bacterial diversity and distribution. Cultivation of yet unknown species was carried out to get insights in the physiology and adaptation of the microorganisms. Adaptation strategies of the microorganisms were studied by determining changes of the cell membrane phospholipid fatty acid (PLFA) inventory of an isolated bacterium in response to temperature and pH fluctuations and by measuring enzyme activity at low temperature in environmental soil samples. The two studied glacier forefields are extreme habitats characterised by low temperatures, low water availability and small oligotrophic nutrient pools and represent sites of different bacterial succession in relation to soil parameters. The investigated sites showed microbial succession at an early step of soil formation near the ice tongue in comparison to closely located but rather older and more developed soil from the forefield. At the early step the succession is influenced by a deglaciation-dependent areal shift of soil parameters followed by a variable and prevalently depth-related distribution of the soil parameters that is driven by the extreme Antarctic conditions. The dominant taxa in the glacier forefields are Actinobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria and Chloroflexi. The connection of soil characteristics with bacterial community structure showed that soil parameter and soil formation along the glacier forefield influence the distribution of certain phyla. In the early step of succession the relative undifferentiated bacterial diversity reflects the undifferentiated soil development and has a high potential to shift according to past and present environmental conditions. With progressing development environmental constraints such as water or carbon limitation have a greater influence. Adapting the culturing conditions to the cold and oligotrophic environment, the number of culturable heterotrophic bacteria reached up to 108 colony forming units per gram soil and 148 isolates were obtained. Two new psychrotolerant bacteria, Herbaspirillum psychrotolerans PB1T and Chryseobacterium frigidisoli PB4T, were characterised in detail and described as novel species in the family of Oxalobacteraceae and Flavobacteriaceae, respectively. The isolates are able to grow at low temperatures tolerating temperature fluctuations and they are not specialised to a certain substrate, therefore they are well-adapted to the cold and oligotrophic environment. The adaptation strategies of the microorganisms were analysed in environmental samples and cultures focussing on extracellular enzyme activity at low temperature and PLFA analyses. Extracellular phosphatases (pH 11 and pH 6.5), β-glucosidase, invertase and urease activity were detected in the glacier forefield soils at low temperature (14°C) catalysing the conversion of various compounds providing necessary substrates and may further play a role in the soil formation and total carbon turnover of the habitat. The PLFA analysis of the newly isolated species C. frigidisoli showed that the cold-adapted strain develops different strategies to maintain the cell membrane function under changing environmental conditions by altering the PLFA inventory at different temperatures and pH values. A newly discovered fatty acid, which was not found in any other microorganism so far, significantly increased at decreasing temperature and low pH and thus plays an important role in the adaption of C. frigidisoli. This work gives insights into the diversity, distribution and adaptation mechanisms of microbial communities in oligotrophic cold-affected soils and shows that Antarctic glacier forefields are suitable model systems to study bacterial colonisation in connection to soil formation.}, language = {en} } @phdthesis{Rolo2023, author = {Rolo, David}, title = {Assembly of photosystem I in thylakoid membranes}, school = {Universit{\"a}t Potsdam}, pages = {177}, year = {2023}, abstract = {The light reactions of photosynthesis are carried out by a series of multiprotein complexes embedded in thylakoid membranes. Among them, photosystem I (PSI), acting as plastocyanin-ferderoxin oxidoreductase, catalyzes the final reaction. Together with light-harvesting antenna I, PSI forms a high-molecular-weight supercomplex of ~600 kDa, consisting of eighteen subunits and nearly two hundred co-factors. Assembly of the various components into a functional thylakoid membrane complex requires precise coordination, which is provided by the assembly machinery. Although this includes a small number of proteins (PSI assembly factors) that have been shown to play a role in the formation of PSI, the process as a whole, as well as the intricacy of its members, remains largely unexplored. In the present work, two approaches were used to find candidate PSI assembly factors. First, EnsembleNet was used to select proteins thought to be functionally related to known PSI assembly factors in Arabidopsis thaliana (approach I), and second, co-immunoprecipitation (Co-IP) of tagged PSI assembly factors in Nicotiana tabacum was performed (approach II). Here, the novel PSI assembly factors designated CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) and Ycf4-INTERACTING PROTEIN 1 (Y4IP1) were identified. A. thaliana null mutants for CEPA1 and Y4IP1 showed a growth phenotype and pale leaves compared with the wild type. Biophysical experiments using pulse amplitude modulation (PAM) revealed insufficient electron transport on the PSII acceptor side. Biochemical analyses revealed that both CEPA1 and Y4IP1 are specifically involved in PSI accumulation in A. thaliana at the post-translational level but are not essential. Consistent with their roles as factors in the assembly of a thylakoid membrane protein complex, the two proteins localize to thylakoid membranes. Remarkably, cepa1 y4ip1 double mutants exhibited lethal phenotypes in early developmental stages under photoautotrophic growth. Finally, co-IP and native gel experiments supported a possible role for CEPA1 and Y4IP1 in mediating PSI assembly in conjunction with other PSI assembly factors (e.g., PPD1- and PSA3-CEPA1 and Ycf4-Y4IP1). The fact that CEPA1 and Y4IP1 are found exclusively in green algae and higher plants suggests eukaryote-specific functions. Although the specific mechanisms need further investigation, CEPA1 and Y4IP1 are two novel assembly factors that contribute to PSI formation.}, language = {en} } @phdthesis{GraberMajchrzak2018, author = {Graber Majchrzak, Sarah}, title = {Arbeit - Produktion - Protest}, series = {Zeithistorische Studien}, journal = {Zeithistorische Studien}, number = {62}, publisher = {B{\"o}hlau}, address = {K{\"o}ln}, isbn = {978-3-412-51917-9}, school = {Universit{\"a}t Potsdam}, pages = {563 S.}, year = {2018}, abstract = {Am 14. August 1980 begannen die Arbeiter*innen auf der Danziger Leninwerft einen Besetzungsstreik, in deren Folge die erste unabh{\"a}ngige Gewerkschaft Solidarność gegr{\"u}ndet wurde. Einen Monat sp{\"a}ter am 17. September 1980 gingen auf der anderen Seite des „Eisernen Vorhangs" die Arbeiter*innen der „AG Weser" Werft in Bremen auf die Straße, um gegen den Verlust ihrer Arbeitspl{\"a}tze zu protestieren. Die vorliegende Studie zeigt aus einer Perspektive „von unten", wie seit den 1970er Jahren Betriebe in zwei unterschiedlichen politisch-{\"o}konomischen Systeme auf technische Ver{\"a}nderungen und die versch{\"a}rfte Konkurrenz auf dem Weltmarkt reagierten und verweist darauf, dass die Krisen in Ost und West Ende der 1970er Jahre eng miteinander verbunden waren.}, language = {de} } @phdthesis{Brill2022, author = {Brill, Fabio Alexander}, title = {Applications of machine learning and open geospatial data in flood risk modelling}, doi = {10.25932/publishup-55594}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555943}, school = {Universit{\"a}t Potsdam}, pages = {xix, 124}, year = {2022}, abstract = {Der technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle auf Basis immer gr{\"o}ßerer Datens{\"a}tze zu produzieren. F{\"u}r das Risikomanagement von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage notwendig, z.B. in der Auswertung von Beobachtungsdaten, f{\"u}r die Vorhersage von Gefahrenszenarien, oder zur statistischen Absch{\"a}tzung der zu erwartenden Sch{\"a}den. Es stellt sich also die Frage, inwiefern moderne Modellierungsans{\"a}tze wie das maschinelle Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden k{\"o}nnen. Zus{\"a}tzlich ist im Hinblick auf die Datenverf{\"u}gbarkeit und -zug{\"a}nglichkeit ein Trend zur {\"O}ffnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die M{\"o}glichkeiten und Grenzen des maschinellen Lernens und frei verf{\"u}gbarer Geodaten auf dem Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses {\"u}bergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet und detailliert betrachtet. Eine prominente Datenquelle im Bereich Hochwasser ist die satellitenbasierte Kartierung von {\"U}berflutungsfl{\"a}chen, die z.B. {\"u}ber den Copernicus Service der Europ{\"a}ischen Union frei zur Verf{\"u}gung gestellt werden. Große Hoffnungen werden in der wissenschaftlichen Literatur in diese Produkte gesetzt, sowohl f{\"u}r die akute Unterst{\"u}tzung der Einsatzkr{\"a}fte im Katastrophenfall, als auch in der Modellierung mittels hydrodynamischer Modelle oder zur Schadensabsch{\"a}tzung. Daher wurde ein Fokus in dieser Arbeit auf die Untersuchung dieser Flutmasken gelegt. Aus der Beobachtung, dass die Qualit{\"a}t dieser Produkte in bewaldeten und urbanen Gebieten unzureichend ist, wurde ein Verfahren zur nachtr{\"a}glichenVerbesserung mittels maschinellem Lernen entwickelt. Das Verfahren basiert auf einem Klassifikationsalgorithmus der nur Trainingsdaten von einer vorherzusagenden Klasse ben{\"o}tigt, im konkreten Fall also Daten von {\"U}berflutungsfl{\"a}chen, nicht jedoch von der negativen Klasse (trockene Gebiete). Die Anwendung f{\"u}r Hurricane Harvey in Houston zeigt großes Potenzial der Methode, abh{\"a}ngig von der Qualit{\"a}t der urspr{\"u}nglichen Flutmaske. Anschließend wird anhand einer prozessbasierten Modellkette untersucht, welchen Einfluss implementierte physikalische Prozessdetails auf das vorhergesagte statistische Risiko haben. Es wird anschaulich gezeigt, was eine Risikostudie basierend auf etablierten Modellen leisten kann. Solche Modellketten sind allerdings bereits f{\"u}r Flusshochwasser sehr komplex, und f{\"u}r zusammengesetzte oder kaskadierende Ereignisse mit Starkregen, Sturzfluten, und weiteren Prozessen, kaum vorhanden. Im vierten Kapitel dieser Arbeit wird daher getestet, ob maschinelles Lernen auf Basis von vollst{\"a}ndigen Schadensdaten einen direkteren Weg zur Schadensmodellierung erm{\"o}glicht, der die explizite Konzeption einer solchen Modellkette umgeht. Dazu wird ein staatlich erhobener Datensatz der gesch{\"a}digten Geb{\"a}ude w{\"a}hrend des schweren El Ni{\~n}o Ereignisses 2017 in Peru verwendet. In diesem Kontext werden auch die M{\"o}glichkeiten des Data-Mining zur Extraktion von Prozessverst{\"a}ndnis ausgelotet. Es kann gezeigt werden, dass diverse frei verf{\"u}gbare Geodaten n{\"u}tzliche Informationen f{\"u}r die Gefahren- und Schadensmodellierung von komplexen Flutereignissen liefern, z.B. satellitenbasierte Regenmessungen, topographische und hydrographische Information, kartierte Siedlungsfl{\"a}chen, sowie Indikatoren aus Spektraldaten. Zudem zeigen sich Erkenntnisse zu den Sch{\"a}digungsprozessen, die im Wesentlichen mit den vorherigen Erwartungen in Einklang stehen. Die maximale Regenintensit{\"a}t wirkt beispielsweise in St{\"a}dten und steilen Schluchten st{\"a}rker sch{\"a}digend, w{\"a}hrend die Niederschlagssumme in tiefliegenden Flussgebieten und bewaldeten Regionen als aussagekr{\"a}ftiger befunden wurde. L{\"a}ndliche Gebiete in Peru weisen in der pr{\"a}sentierten Studie eine h{\"o}here Vulnerabilit{\"a}t als die Stadtgebiete auf. Jedoch werden auch die grunds{\"a}tzlichen Grenzen der Methodik und die Abh{\"a}ngigkeit von spezifischen Datens{\"a}tzen and Algorithmen offenkundig. In der {\"u}bergreifenden Diskussion werden schließlich die verschiedenen Methoden - prozessbasierte Modellierung, pr{\"a}diktives maschinelles Lernen, und Data-Mining - mit Blick auf die Gesamtfragestellungen evaluiert. Im Bereich der Gefahrenbeobachtung scheint eine Fokussierung auf neue Algorithmen sinnvoll. Im Bereich der Gefahrenmodellierung, insbesondere f{\"u}r Flusshochwasser, wird eher die Verbesserung von physikalischen Modellen, oder die Integration von prozessbasierten und statistischen Verfahren angeraten. In der Schadensmodellierung fehlen nach wie vor die großen repr{\"a}sentativen Datens{\"a}tze, die f{\"u}r eine breite Anwendung von maschinellem Lernen Voraussetzung ist. Daher ist die Verbesserung der Datengrundlage im Bereich der Sch{\"a}den derzeit als wichtiger einzustufen als die Auswahl der Algorithmen.}, language = {en} } @phdthesis{Kempa2004, author = {Kempa, Stefan}, title = {Analysen zur Stressantwort von Arabidopsis thaliana unter Schwefelmangelbedingungen : Studien zur Funktion der Dehydroascorbatreduktase in vivo}, address = {Potsdam}, pages = {123 S. : graph. Darst.}, year = {2004}, language = {de} } @phdthesis{Krause2011, author = {Krause, Jette}, title = {An expert-based Bayesian investigation of greenhouse gas emission reduction options for German passenger vehicles until 2030}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57671}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The present thesis introduces an iterative expert-based Bayesian approach for assessing greenhouse gas (GHG) emissions from the 2030 German new vehicle fleet and quantifying the impacts of their main drivers. A first set of expert interviews has been carried out in order to identify technologies which may help to lower car GHG emissions and to quantify their emission reduction potentials. Moreover, experts were asked for their probability assessments that the different technologies will be widely adopted, as well as for important prerequisites that could foster or hamper their adoption. Drawing on the results of these expert interviews, a Bayesian Belief Network has been built which explicitly models three vehicle types: Internal Combustion Engine Vehicles (which include mild and full Hybrid Electric Vehicles), Plug-In Hybrid Electric Vehicles, and Battery Electric Vehicles. The conditional dependencies of twelve central variables within the BBN - battery energy, fuel and electricity consumption, relative costs, and sales shares of the vehicle types - have been quantified by experts from German car manufacturers in a second series of interviews. For each of the seven second-round interviews, an expert's individually specified BBN results. The BBN have been run for different hypothetical 2030 scenarios which differ, e.g., in regard to battery development, regulation, and fuel and electricity GHG intensities. The present thesis delivers results both in regard to the subject of the investigation and in regard to its method. On the subject level, it has been found that the different experts expect 2030 German new car fleet emission to be at 50 to 65\% of 2008 new fleet emissions under the baseline scenario. They can be further reduced to 40 to 50\% of the emissions of the 2008 fleet though a combination of a higher share of renewables in the electricity mix, a larger share of biofuels in the fuel mix, and a stricter regulation of car CO\$_2\$ emissions in the European Union. Technically, 2030 German new car fleet GHG emissions can be reduced to a minimum of 18 to 44\% of 2008 emissions, a development which can not be triggered by any combination of measures modeled in the BBN alone but needs further commitment. Out of a wealth of existing BBN, few have been specified by individual experts through elicitation, and to my knowledge, none of them has been employed for analyzing perspectives for the future. On the level of methods, this work shows that expert-based BBN are a valuable tool for making experts' expectations for the future explicit and amenable to the analysis of different hypothetical scenarios. BBN can also be employed for quantifying the impacts of main drivers. They have been demonstrated to be a valuable tool for iterative stakeholder-based science approaches.}, language = {en} } @phdthesis{NickeltCzycykowski2008, author = {Nickelt-Czycykowski, Iliya Peter}, title = {Aktive Regionen der Sonnenoberfl{\"a}che und ihre zeitliche Variation in zweidimensionaler Spektro-Polarimetrie}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25524}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Die Arbeit beschreibt die Analyse von Beobachtungen zweier Sonnenflecken in zweidimensionaler Spektro-Polarimetrie. Die Daten wurden mit dem Fabry-P{\´e}rot-Interferometer der Universit{\"a}t G{\"o}ttingen am Vakuum-Turm-Teleskop auf Teneriffa erfasst. Von der aktiven Region NOAA 9516 wurde der volle Stokes-Vektor des polarisierten Lichts in der Absorptionslinie bei 630,249 nm in Einzelaufnahmen beobachtet, und von der aktiven Region NOAA 9036 wurde bei 617,3 nm Wellenl{\"a}nge eine 90-min{\"u}tige Zeitserie des zirkular polarisierten Lichts aufgezeichnet. Aus den reduzierten Daten werden Ergebniswerte f{\"u}r Intensit{\"a}t, Geschwindigkeit in Beobachtungsrichtung, magnetische Feldst{\"a}rke sowie verschiedene weitere Plasmaparameter abgeleitet. Mehrere Ans{\"a}tze zur Inversion solarer Modellatmosph{\"a}ren werden angewendet und verglichen. Die teilweise erheblichen Fehlereinfl{\"u}sse werden ausf{\"u}hrlich diskutiert. Das Frequenzverhalten der Ergebnisse und Abh{\"a}ngigkeiten nach Ort und Zeit werden mit Hilfe der Fourier- und Wavelet-Transformation weiter analysiert. Als Resultat l{\"a}sst sich die Existenz eines hochfrequenten Bandes f{\"u}r Geschwindigkeitsoszillationen mit einer zentralen Frequenz von 75 Sekunden (13 mHz) best{\"a}tigen. In gr{\"o}ßeren photosph{\"a}rischen H{\"o}hen von etwa 500 km entstammt die Mehrheit der damit zusammenh{\"a}ngenden Schockwellen den dunklen Anteilen der Granulen, im Unterschied zu anderen Frequenzbereichen. Die 75-Sekunden-Oszillationen werden ebenfalls in der aktiven Region beobachtet, vor allem in der Lichtbr{\"u}cke. In den identifizierten B{\"a}ndern oszillatorischer Power der Geschwindigkeit sind in einer dunklen, penumbralen Struktur sowie in der Lichtbr{\"u}cke ausgepr{\"a}gte Strukturen erkennbar, die sich mit einer Horizontalgeschwindigkeit von 5-8 km/s in die ruhige Sonne bewegen. Diese zeigen einen deutlichen Anstieg der Power, vor allem im 5-Minuten-Band, und stehen m{\"o}glicherweise in Zusammenhang mit dem Ph{\"a}nomen der „Evershed-clouds". Eingeschr{\"a}nkt durch ein sehr geringes Signal-Rausch-Verh{\"a}ltnis und hohe Fehlereinfl{\"u}sse werden auch Magnetfeldvariationen mit einer Periode von sechs Minuten am {\"U}bergang von Umbra zu Penumbra in der N{\"a}he einer Lichtbr{\"u}cke beobachtet. Um die beschriebenen Resultate zu erzielen, wurden bestehende Visualisierungsverfahren der Frequenzanalyse verbessert oder neu entwickelt, insbesondere f{\"u}r Ergebnisse der Wavelet-Transformation.}, language = {de} } @phdthesis{Kellermann2011, author = {Kellermann, Thorsten}, title = {Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59578}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity. More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered. All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P - P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution. In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse.}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @phdthesis{Gunold2022, author = {Gunold, Sascha}, title = {Abzug unter Beobachtung}, doi = {10.25932/publishup-57197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571977}, school = {Universit{\"a}t Potsdam}, pages = {391}, year = {2022}, abstract = {Mehr als vier Jahrzehnte lang beobachteten die Streitkr{\"a}fte und Milit{\"a}rnachrichtendienste der NATO-Staaten die sowjetischen Truppen in der DDR. Hierf{\"u}r {\"u}bernahm in der Bundesrepublik Deutschland der Bundesnachrichtendienst (BND) die milit{\"a}rische Auslandsaufkl{\"a}rung unter Anwendung nachrichtendienstlicher Mittel und Methoden. Die Bundeswehr betrieb dagegen taktische Fernmelde- und elektronische Aufkl{\"a}rung und h{\"o}rte vor allem den Funkverkehr der „Gruppe der sowjetischen Streitkr{\"a}fte in Deutschland" (GSSD) ab. Mit der Aufstellung einer zentralen Dienststelle f{\"u}r das milit{\"a}rische Nachrichtenwesen, dem Amt f{\"u}r Nachrichtenwesen der Bundeswehr, b{\"u}ndelte und erweiterte zugleich das Bundesministerium f{\"u}r Verteidigung in den 1980er Jahren seine analytischen Kapazit{\"a}ten. Das Monopol des BND in der milit{\"a}rischen Auslandsaufkl{\"a}rung wurde von der Bundeswehr dadurch zunehmend infrage gestellt. Nach der deutschen Wiedervereinigung am 3. Oktober 1990 befanden sich immer noch mehr als 300.000 sowjetische Soldaten auf deutschem Territorium. Die 1989 in Westgruppe der Truppen (WGT) umbenannte GSSD sollte - so der Zwei-plus-Vier-Vertrag - bis 1994 vollst{\"a}ndig abziehen. Der Vertrag verbot auch den drei Westm{\"a}chten, in den neuen Bundesl{\"a}ndern milit{\"a}risch t{\"a}tig zu sein. Die f{\"u}r die Milit{\"a}raufkl{\"a}rung bis dahin unverzichtbaren Milit{\"a}rverbindungsmissionen der Westm{\"a}chte mussten ihre Dienste einstellen. Doch was geschah mit diesem „alliierten Erbe"? Wer {\"u}bernahm auf deutscher Seite die Aufkl{\"a}rung der sowjetischen Truppen und wer kontrollierte den Truppenabzug?  Die Studie untersucht die Rolle von Bundeswehr und BND beim Abzug der WGT zwischen 1990 und 1994 und fragt dabei nach Kooperation und Konkurrenz zwischen Streitkr{\"a}ften und Nachrichtendiensten. Welche milit{\"a}rischen und nachrichtendienstlichen Mittel und F{\"a}higkeiten stellte die Bundesregierung zur Bew{\"a}ltigung des Truppenabzugs zur Verf{\"u}gung, nachdem die westlichen Milit{\"a}rverbindungsmissionen aufgel{\"o}st wurden? Wie ver{\"a}nderten sich die Anforderungen an die milit{\"a}rische Auslandsaufkl{\"a}rung des BND? Inwieweit setzten sich Konkurrenz und Kooperation von Bundeswehr und BNDbeim Truppenabzug fort? Welche Rolle spielten dabei die einstigen Westm{\"a}chte? Die Arbeit versteht sich nicht nur als Beitrag zur Milit{\"a}rgeschichte, sondern auch zur deutschen Nachrichtendienstgeschichte.}, language = {de} } @phdthesis{Tattarini2022, author = {Tattarini, Giulia}, title = {A job is good, but is a good job healthier?}, doi = {10.25932/publishup-53672}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536723}, school = {Universit{\"a}t Potsdam}, pages = {182}, year = {2022}, abstract = {What are the consequences of unemployment and precarious employment for individuals' health in Europe? What are the moderating factors that may offset (or increase) the health consequences of labor-market risks? How do the effects of these risks vary across different contexts, which differ in their institutional and cultural settings? Does gender, regarded as a social structure, play a role, and how? To answer these questions is the aim of my cumulative thesis. This study aims to advance our knowledge about the health consequences that unemployment and precariousness cause over the life course. In particular, I investigate how several moderating factors, such as gender, the family, and the broader cultural and institutional context, may offset or increase the impact of employment instability and insecurity on individual health. In my first paper, 'The buffering role of the family in the relationship between job loss and self-perceived health: Longitudinal results from Europe, 2004-2011', I and my co-authors measure the causal effect of job loss on health and the role of the family and welfare states (regimes) as moderating factors. Using EU-SILC longitudinal data (2004-2011), we estimate the probability of experiencing 'bad health' following a transition to unemployment by applying linear probability models and undertake separate analyses for men and women. Firstly, we measure whether changes in the independent variable 'job loss' lead to changes in the dependent variable 'self-rated health' for men and women separately. Then, by adding into the model different interaction terms, we measure the moderating effect of the family, both in terms of emotional and economic support, and how much it varies across different welfare regimes. As an identification strategy, we first implement static fixed-effect panel models, which control for time-varying observables and indirect health selection—i.e., constant unobserved heterogeneity. Secondly, to control for reverse causality and path dependency, we implement dynamic fixed-effect panel models, adding a lagged dependent variable to the model. We explore the role of the family by focusing on close ties within households: we consider the presence of a stable partner and his/her working status as a source of social and economic support. According to previous literature, having a partner should reduce the stress from adverse events, thanks to the symbolic and emotional dimensions that such a relationship entails, regardless of any economic benefits. Our results, however, suggest that benefits linked to the presence of a (female) partner also come from the financial stability that (s)he can provide in terms of a second income. Furthermore, we find partners' employment to be at least as important as the mere presence of the partner in reducing the negative effect of job loss on the individual's health by maintaining the household's standard of living and decreasing economic strain on the family. Our results are in line with previous research, which has highlighted that some people cope better than others with adverse life circumstances, and the support provided by the family is a crucial resource in that regard. We also reported an important interaction between the family and the welfare state in moderating the health consequences of unemployment, showing how the compensation effect of the family varies across welfare regimes. The family plays a decisive role in cushioning the adverse consequences of labor market risks in Southern and Eastern welfare states, characterized by less developed social protection systems and -especially the Southern - high level of familialism. The first paper also found important gender differences concerning job loss, family and welfare effects. Of particular interest is the evidence suggesting that health selection works differently for men and women, playing a more prominent role for women than for men in explaining the relationship between job loss and self-perceived health. The second paper, 'Gender roles and selection mechanisms across contexts: A comparative analysis of the relationship between unemployment, self-perceived health, and gender.' investigates more in-depth the gender differential in health driven by unemployment. Being a highly contested issue in literature, we aim to study whether men are more penalized than women or the other way around and the mechanisms that may explain the gender difference. To do that, we rely on two theoretical arguments: the availability of alternative roles and social selection. The first argument builds on the idea that men and women may compensate for the detrimental health consequences of unemployment through the commitment to 'alternative roles,' which can provide for the resources needed to fulfill people's socially constructed needs. Notably, the availability of alternative options depends on the different positions that men and women have in society. Further, we merge the availability of the 'alternative roles' argument with the health selection argument. We assume that health selection could be contingent on people's social position as defined by gender and, thus, explain the gender differential in the relationship between unemployment and health. Ill people might be less reluctant to fall or remain (i.e., self-select) in unemployment if they have alternative roles. In Western societies, women generally have more alternative roles than men and thus more discretion in their labor market attachment. Therefore, health selection should be stronger for them, explaining why unemployment is less menace for women than for their male counterparts. Finally, relying on the idea of different gender regimes, we extended these arguments to comparison across contexts. For example, in contexts where being a caregiver is assumed to be women's traditional and primary roles and the primary breadwinner role is reserved to men, unemployment is less stigmatized, and taking up alternative roles is more socially accepted for women than for men (Hp.1). Accordingly, social (self)selection should be stronger for women than for men in traditional contexts, where, in the case of ill-health, the separation from work is eased by the availability of alternative roles (Hp.2). By focusing on contexts that are representative of different gender regimes, we implement a multiple-step comparative approach. Firstly, by using EU-SILC longitudinal data (2004-2015), our analysis tests gender roles and selection mechanisms for Sweden and Italy, representing radically different gender regimes, thus providing institutional and cultural variation. Then, we limit institutional heterogeneity by focusing on Germany and comparing East- and West-Germany and older and younger cohorts—for West-Germany (SOEP data 1995-2017). Next, to assess the differential impact of unemployment for men and women, we compared (unemployed and employed) men with (unemployed and employed) women. To do so, we calculate predicted probabilities and average marginal effect from two distinct random-effects probit models. Our first step is estimating random-effects models that assess the association between unemployment and self-perceived health, controlling for observable characteristics. In the second step, our fully adjusted model controls for both direct and indirect selection. We do this using dynamic correlated random-effects (CRE) models. Further, based on the fully adjusted model, we test our hypotheses on alternative roles (Hp.1) by comparing several contexts - models are estimated separately for each context. For this hypothesis, we pool men and women and include an interaction term between unemployment and gender, which has the advantage to allow for directly testing whether gender differences in the effect of unemployment exist and are statistically significant. Finally, we test the role of selection mechanisms (Hp.2), using the KHB method to compare coefficients across nested nonlinear models. Specifically, we test the role of selection for the relationship between unemployment and health by comparing the partially-adjusted and fully-adjusted models. To allow selection mechanisms to operate differently between genders, we estimate separate models for men and women. We found support to our first hypotheses—the context where people are embedded structures the relationship between unemployment, health, and gender. We found no gendered effect of unemployment on health in the egalitarian context of Sweden. Conversely, in the traditional context of Italy, we observed substantive and statistically significant gender differences in the effect of unemployment on bad health, with women suffering less than men. We found the same pattern for comparing East and West Germany and younger and older cohorts in West Germany. On the contrary, our results did not support our theoretical argument on social selection. We found that in Sweden, women are more selected out of employment than men. In contrast, in Italy, health selection does not seem to be the primary mechanism behind the gender differential—Italian men and women seem to be selected out of employment to the same extent. Namely, we do not find any evidence that health selection is stronger for women in more traditional countries (Hp2), despite the fact that the institutional and the cultural context would offer them a more comprehensive range of 'alternative roles' relative to men. Moreover, our second hypothesis is also rejected in the second and third comparisons, where the cross-country heterogeneity is reduced to maximize cultural differences within the same institutional context. Further research that addresses selection into inactivity is needed to evaluate the interplay between selection and social roles across gender regimes. While the health consequences of unemployment have been on the research agenda for a pretty long time, the interest in precarious employment—defined as the linking of the vulnerable worker to work that is characterized by uncertainty and insecurity concerning pay, the stability of the work arrangement, limited access to social benefits, and statutory protections—has emerged only later. Since the 80s, scholars from different disciplines have raised concerns about the social consequences of de-standardization of employment relationships. However, while work has become undoubtedly more precarious, very little is known about its causal effect on individual health and the role of gender as a moderator. These questions are at the core of my third paper : 'Bad job, bad health? A longitudinal analysis of the interaction between precariousness, gender and self-perceived health in Germany'. Herein, I investigate the multidimensional nature of precarious employment and its causal effect on health, particularly focusing on gender differences. With this paper, I aim at overcoming three major shortcomings of earlier studies: The first one regards the cross-sectional nature of data that prevents the authors from ruling out unobserved heterogeneity as a mechanism for the association between precarious employment and health. Indeed, several unmeasured individual characteristics—such as cognitive abilities—may confound the relationship between precarious work and health, leading to biased results. Secondly, only a few studies have directly addressed the role of gender in shaping the relationship. Moreover, available results on the gender differential are mixed and inconsistent: some found precarious employment being more detrimental for women's health, while others found no gender differences or stronger negative association for men. Finally, previous attempts to an empirical translation of the employment precariousness (EP) concept have not always been coherent with their theoretical framework. EP is usually assumed to be a multidimensional and continuous phenomenon; it is characterized by different dimensions of insecurity that may overlap in the same job and lead to different "degrees of precariousness." However, researchers have predominantly focused on one-dimensional indicators—e.g., temporary employment, subjective job insecurity—to measure EP and study the association with health. Besides the fact that this approach partially grasps the phenomenon's complexity, the major problem is the inconsistency of evidence that it has produced. Indeed, this line of inquiry generally reveals an ambiguous picture, with some studies finding substantial adverse effects of temporary over permanent employment, while others report only minor differences. To measure the (causal) effect of precarious work on self-rated health and its variation by gender, I focus on Germany and use four waves from SOEP data (2003, 2007, 2011, and 2015). Germany is a suitable context for my study. Indeed, since the 1980s, the labor market and welfare system have been restructured in many ways to increase the German economy's competitiveness in the global market. As a result, the (standard) employment relationship has been de-standardized: non-standard and atypical employment arrangements—i.e., part-time work, fixed-term contracts, mini-jobs, and work agencies—have increased over time while wages have lowered, even among workers with standard work. In addition, the power of unions has also fallen over the last three decades, leaving a large share of workers without collective protection. Because of this process of de-standardization, the link between wage employment and strong social rights has eroded, making workers more powerless and more vulnerable to labor market risks than in the past. EP refers to this uneven distribution of power in the employment relationship, which can be detrimental to workers' health. Indeed, by affecting individuals' access to power and other resources, EP puts precarious workers at risk of experiencing health shocks and influences their ability to gain and accumulate health advantages (Hp.1). Further, the focus on Germany allows me to investigate my second research question on the gender differential. Germany is usually regarded as a traditionalist gender regime: a context characterized by a configuration of roles. Here, being a caregiver is assumed to be women's primary role, whereas the primary breadwinner role is reserved for men. Although many signs of progress have been made over the last decades towards a greater equalization of opportunities and more egalitarianism, the breadwinner model has barely changed towards a modified version. Thus, women usually take on the double role of workers (the so-called secondary earner) and caregivers, and men still devote most of their time to paid work activities. Moreover, the overall upward trend towards more egalitarian gender ideologies has leveled off over the last decades, moving notably towards more traditional gender ideologies. In this setting, two alternative hypotheses are possible. Firstly, I assume that the negative relationship between EP and health is stronger for women than for men. This is because women are systematically more disadvantaged than men in the public and private spheres of life, having less access to formal and informal sources of power. These gender-related power asymmetries may interact with EP-related power asymmetries resulting in a stronger effect of EP on women's health than on men's health (Hp.2). An alternative way of looking at the gender differential is to consider the interaction that precariousness might have with men's and women's gender identities. According to this view, the negative relationship between EP and health is weaker for women than for men (Hp.2a). In a society with a gendered division of labor and a strong link between masculine identities and stable and well-rewarded job—i.e., a job that confers the role of primary family provider—a male worker with precarious employment might violate the traditional male gender role. Men in precarious jobs may perceive themselves (and by others) as possessing a socially undesirable characteristic, which conflicts with the stereotypical idea of themselves as the male breadwinner. Engaging in behaviors that contradict stereotypical gender identity may decrease self-esteem and foster feelings of inferiority, helplessness, and jealousy, leading to poor health. I develop a new indicator of EP that empirically translates a definition of EP as a multidimensional and continuous phenomenon. I assume that EP is a latent construct composed of seven dimensions of insecurity chosen according to the theory and previous empirical research: Income insecurity, social insecurity, legal insecurity, employment insecurity, working-time insecurity, representation insecurity, worker's vulnerability. The seven dimensions are proxied by eight indicators available in the four waves of the SOEP dataset. The EP composite indicator is obtained by performing a multiple correspondence analysis (MCA) on the eight indicators. This approach aims to construct a summary scale in which all dimensions contribute jointly to the measured experience of precariousness and its health impact. Further, the relationship between EP and 'general self-perceived health' is estimated by applying ordered probit random-effects estimators and calculating average marginal effect (further AME). Then, to control for unobserved heterogeneity, I implement correlated random-effects models that add to the model the within-individual means of the time-varying independent variables. To test the significance of the gender differential, I add an interaction term between EP and gender in the fully adjusted model in the pooled sample. My correlated random-effects models showed EP's negative and substantial 'effect' on self-perceived health for both men and women. Although nonsignificant, the evidence seems in line with previous cross-sectional literature. It supports the hypothesis that employment precariousness could be detrimental to workers' health. Further, my results showed the crucial role of unobserved heterogeneity in shaping the health consequences of precarious employment. This is particularly important as evidence accumulates, yet it is still mostly descriptive. Moreover, my results revealed a substantial difference among men and women in the relationship between EP and health: when EP increases, the risk of experiencing poor health increases much more for men than for women. This evidence falsifies previous theory according to whom the gender differential is contingent on the structurally disadvantaged position of women in western societies. In contrast, they seem to confirm the idea that men in precarious work could experience role conflict to a larger extent than women, as their self-standard is supposed to be the stereotypical breadwinner worker with a good and well-rewarded job. Finally, results from the multiple correspondence analysis contribute to the methodological debate on precariousness, showing that a multidimensional and continuous indicator can express a latent variable of EP. All in all, complementarities are revealed in the results of unemployment and employment precariousness, which have two implications: Policy-makers need to be aware that the total costs of unemployment and precariousness go far beyond the economic and material realm penetrating other fundamental life domains such as individual health. Moreover, they need to balance the trade-off between protecting adequately unemployed people and fostering high-quality employment in reaction to the highlighted market pressures. In this sense, the further development of a (universalistic) welfare state certainly helps mitigate the adverse health effects of unemployment and, therefore, the future costs of both individuals' health and welfare spending. In addition, the presence of a working partner is crucial for reducing the health consequences of employment instability. Therefore, policies aiming to increase female labor market participation should be promoted, especially in those contexts where the welfare state is less developed. Moreover, my results support the significance of taking account of a gender perspective in health research. The findings of the three articles show that job loss, unemployment, and precarious employment, in general, have adverse effects on men's health but less or absent consequences for women's health. Indeed, this suggests the importance of labor and health policies that consider and further distinguish the specific needs of the male and female labor force in Europe. Nevertheless, a further implication emerges: the health consequences of employment instability and de-standardization need to be investigated in light of the gender arrangements and the transforming gender relationships in specific cultural and institutional contexts. My results indeed seem to suggest that women's health advantage may be a transitory phenomenon, contingent on the predominant gendered institutional and cultural context. As the structural difference between men's and women's position in society is eroded, egalitarianism becomes the dominant normative status, so will probably be the gender difference in the health consequences of job loss and precariousness. Therefore, while gender equality in opportunities and roles is a desirable aspect for contemporary societies and a political goal that cannot be postponed further, this thesis raises a further and maybe more crucial question: What kind of equality should be pursued to provide men and women with both good life quality and equal chances in the public and private spheres? In this sense, I believe that social and labor policies aiming to reduce gender inequality in society should focus on improving women's integration into the labor market, implementing policies targeting men, and facilitating their involvement in the private sphere of life. Equal redistribution of social roles could activate a crucial transformation of gender roles and the cultural models that sustain and still legitimate gender inequality in Western societies.}, language = {en} } @phdthesis{Swierczynski2012, author = {Swierczynski, Tina}, title = {A 7000 yr runoff chronology from varved sediments of Lake Mondsee (Upper Austria)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66702}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The potential increase in frequency and magnitude of extreme floods is currently discussed in terms of global warming and the intensification of the hydrological cycle. The profound knowledge of past natural variability of floods is of utmost importance in order to assess flood risk for the future. Since instrumental flood series cover only the last ~150 years, other approaches to reconstruct historical and pre-historical flood events are needed. Annually laminated (varved) lake sediments are meaningful natural geoarchives because they provide continuous records of environmental changes > 10000 years down to a seasonal resolution. Since lake basins additionally act as natural sediment traps, the riverine sediment supply, which is preserved as detrital event layers in the lake sediments, can be used as a proxy for extreme discharge events. Within my thesis I examined a ~ 8.50 m long sedimentary record from the pre-Alpine Lake Mondsee (Northeast European Alps), which covered the last 7000 years. This sediment record consists of calcite varves and intercalated detrital layers, which range in thickness from 0.05 to 32 mm. Detrital layer deposition was analysed by a combined method of microfacies analysis via thin sections, Scanning Electron Microscopy (SEM), μX-ray fluorescence (μXRF) scanning and magnetic susceptibility. This approach allows characterizing individual detrital event layers and assigning a corresponding input mechanism and catchment. Based on varve counting and controlled by 14C age dates, the main goals of this thesis are (i) to identify seasonal runoff processes, which lead to significant sediment supply from the catchment into the lake basin and (ii) to investigate flood frequency under changing climate boundary conditions. This thesis follows a line of different time slices, presenting an integrative approach linking instrumental and historical flood data from Lake Mondsee in order to evaluate the flood record inferred from Lake Mondsee sediments. The investigation of eleven short cores covering the last 100 years reveals the abundance of 12 detrital layers. Therein, two types of detrital layers are distinguished by grain size, geochemical composition and distribution pattern within the lake basin. Detrital layers, which are enriched in siliciclastic and dolomitic material, reveal sediment supply from the Flysch sediments and Northern Calcareous Alps into the lake basin. These layers are thicker in the northern lake basin (0.1-3.9 mm) and thinner in the southern lake basin (0.05-1.6 mm). Detrital layers, which are enriched in dolomitic components forming graded detrital layers (turbidites), indicate the provenance from the Northern Calcareous Alps. These layers are generally thicker (0.65-32 mm) and are solely recorded within the southern lake basin. In comparison with instrumental data, thicker graded layers result from local debris flow events in summer, whereas thin layers are deposited during regional flood events in spring/summer. Extreme summer floods as reported from flood layer deposition are principally caused by cyclonic activity from the Mediterranean Sea, e.g. July 1954, July 1997 and August 2002. During the last two millennia, Lake Mondsee sediments reveal two significant flood intervals with decadal-scale flood episodes, during the Dark Ages Cold Period (DACP) and the transition from the Medieval Climate Anomaly (MCA) into the Little Ice Age (LIA) suggesting a linkage of transition to climate cooling and summer flood recurrences in the Northeastern Alps. In contrast, intermediate or decreased flood episodes appeared during the MWP and the LIA. This indicates a non-straightforward relationship between temperature and flood recurrence, suggesting higher cyclonic activity during climate transition in the Northeast Alps. The 7000-year flood chronology reveals 47 debris flows and 269 floods, with increased flood activity shifting around 3500 and 1500 varve yr BP (varve yr BP = varve years before present, before present = AD 1950). This significant increase in flood activity shows a coincidence with millennial-scale climate cooling that is reported from main Alpine glacier advances and lower tree lines in the European Alps since about 3300 cal. yr BP (calibrated years before present). Despite relatively low flood occurrence prior to 1500 varve yr BP, floods at Lake Mondsee could have also influenced human life in early Neolithic lake dwellings (5750-4750 cal. yr BP). While the first lake dwellings were constructed on wetlands, the later lake dwellings were built on piles in the water suggesting an early flood risk adaptation of humans and/or a general change of the Late Neolithic Culture of lake-dwellers because of socio-economic reasons. However, a direct relationship between the final abandonment of the lake dwellings and higher flood frequencies is not evidenced.}, language = {en} }