@phdthesis{Zhou2022, author = {Zhou, Shuo}, title = {Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young's modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young's modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young's modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity.}, language = {en} } @phdthesis{Neuharth2022, author = {Neuharth, Derek}, title = {Evolution of divergent and strike-slip boundaries in response to surface processes}, doi = {10.25932/publishup-54940}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549403}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 108}, year = {2022}, abstract = {Plate tectonics describes the movement of rigid plates at the surface of the Earth as well as their complex deformation at three types of plate boundaries: 1) divergent boundaries such as rift zones and mid-ocean ridges, 2) strike-slip boundaries where plates grind past each other, such as the San Andreas Fault, and 3) convergent boundaries that form large mountain ranges like the Andes. The generally narrow deformation zones that bound the plates exhibit complex strain patterns that evolve through time. During this evolution, plate boundary deformation is driven by tectonic forces arising from Earth's deep interior and from within the lithosphere, but also by surface processes, which erode topographic highs and deposit the resulting sediment into regions of low elevation. Through the combination of these factors, the surface of the Earth evolves in a highly dynamic way with several feedback mechanisms. At divergent boundaries, for example, tensional stresses thin the lithosphere, forcing uplift and subsequent erosion of rift flanks, which creates a sediment source. Meanwhile, the rift center subsides and becomes a topographic low where sediments accumulate. This mass transfer from foot- to hanging wall plays an important role during rifting, as it prolongs the activity of individual normal faults. When rifting continues, continents are eventually split apart, exhuming Earth's mantle and creating new oceanic crust. Because of the complex interplay between deep tectonic forces that shape plate boundaries and mass redistribution at the Earth's surface, it is vital to understand feedbacks between the two domains and how they shape our planet. In this study I aim to provide insight on two primary questions: 1) How do divergent and strike-slip plate boundaries evolve? 2) How is this evolution, on a large temporal scale and a smaller structural scale, affected by the alteration of the surface through erosion and deposition? This is done in three chapters that examine the evolution of divergent and strike-slip plate boundaries using numerical models. Chapter 2 takes a detailed look at the evolution of rift systems using two-dimensional models. Specifically, I extract faults from a range of rift models and correlate them through time to examine how fault networks evolve in space and time. By implementing a two-way coupling between the geodynamic code ASPECT and landscape evolution code FastScape, I investigate how the fault network and rift evolution are influenced by the system's erosional efficiency, which represents many factors like lithology or climate. In Chapter 3, I examine rift evolution from a three-dimensional perspective. In this chapter I study linkage modes for offset rifts to determine when fast-rotating plate-boundary structures known as continental microplates form. Chapter 4 uses the two-way numerical coupling between tectonics and landscape evolution to investigate how a strike-slip boundary responds to large sediment loads, and whether this is sufficient to form an entirely new type of flexural strike-slip basin.}, language = {en} } @phdthesis{Zeuschner2022, author = {Zeuschner, Steffen Peer}, title = {Magnetoacoustics observed with ultrafast x-ray diffraction}, doi = {10.25932/publishup-56109}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561098}, school = {Universit{\"a}t Potsdam}, pages = {V, 128, IX}, year = {2022}, abstract = {In the present thesis I investigate the lattice dynamics of thin film hetero structures of magnetically ordered materials upon femtosecond laser excitation as a probing and manipulation scheme for the spin system. The quantitative assessment of laser induced thermal dynamics as well as generated picosecond acoustic pulses and their respective impact on the magnetization dynamics of thin films is a challenging endeavor. All the more, the development and implementation of effective experimental tools and comprehensive models are paramount to propel future academic and technological progress. In all experiments in the scope of this cumulative dissertation, I examine the crystal lattice of nanoscale thin films upon the excitation with femtosecond laser pulses. The relative change of the lattice constant due to thermal expansion or picosecond strain pulses is directly monitored by an ultrafast X-ray diffraction (UXRD) setup with a femtosecond laser-driven plasma X-ray source (PXS). Phonons and spins alike exert stress on the lattice, which responds according to the elastic properties of the material, rendering the lattice a versatile sensor for all sorts of ultrafast interactions. On the one hand, I investigate materials with strong magneto-elastic properties; The highly magnetostrictive rare-earth compound TbFe2, elemental Dysprosium or the technological relevant Invar material FePt. On the other hand I conduct a comprehensive study on the lattice dynamics of Bi1Y2Fe5O12 (Bi:YIG), which exhibits high-frequency coherent spin dynamics upon femtosecond laser excitation according to the literature. Higher order standing spinwaves (SSWs) are triggered by coherent and incoherent motion of atoms, in other words phonons, which I quantified with UXRD. We are able to unite the experimental observations of the lattice and magnetization dynamics qualitatively and quantitatively. This is done with a combination of multi-temperature, elastic, magneto-elastic, anisotropy and micro-magnetic modeling. The collective data from UXRD, to probe the lattice, and time-resolved magneto-optical Kerr effect (tr-MOKE) measurements, to monitor the magnetization, were previously collected at different experimental setups. To improve the precision of the quantitative assessment of lattice and magnetization dynamics alike, our group implemented a combination of UXRD and tr-MOKE in a singular experimental setup, which is to my knowledge, the first of its kind. I helped with the conception and commissioning of this novel experimental station, which allows the simultaneous observation of lattice and magnetization dynamics on an ultrafast timescale under identical excitation conditions. Furthermore, I developed a new X-ray diffraction measurement routine which significantly reduces the measurement time of UXRD experiments by up to an order of magnitude. It is called reciprocal space slicing (RSS) and utilizes an area detector to monitor the angular motion of X-ray diffraction peaks, which is associated with lattice constant changes, without a time-consuming scan of the diffraction angles with the goniometer. RSS is particularly useful for ultrafast diffraction experiments, since measurement time at large scale facilities like synchrotrons and free electron lasers is a scarce and expensive resource. However, RSS is not limited to ultrafast experiments and can even be extended to other diffraction techniques with neutrons or electrons.}, language = {en} } @phdthesis{Gunold2022, author = {Gunold, Sascha}, title = {Abzug unter Beobachtung}, doi = {10.25932/publishup-57197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571977}, school = {Universit{\"a}t Potsdam}, pages = {391}, year = {2022}, abstract = {Mehr als vier Jahrzehnte lang beobachteten die Streitkr{\"a}fte und Milit{\"a}rnachrichtendienste der NATO-Staaten die sowjetischen Truppen in der DDR. Hierf{\"u}r {\"u}bernahm in der Bundesrepublik Deutschland der Bundesnachrichtendienst (BND) die milit{\"a}rische Auslandsaufkl{\"a}rung unter Anwendung nachrichtendienstlicher Mittel und Methoden. Die Bundeswehr betrieb dagegen taktische Fernmelde- und elektronische Aufkl{\"a}rung und h{\"o}rte vor allem den Funkverkehr der „Gruppe der sowjetischen Streitkr{\"a}fte in Deutschland" (GSSD) ab. Mit der Aufstellung einer zentralen Dienststelle f{\"u}r das milit{\"a}rische Nachrichtenwesen, dem Amt f{\"u}r Nachrichtenwesen der Bundeswehr, b{\"u}ndelte und erweiterte zugleich das Bundesministerium f{\"u}r Verteidigung in den 1980er Jahren seine analytischen Kapazit{\"a}ten. Das Monopol des BND in der milit{\"a}rischen Auslandsaufkl{\"a}rung wurde von der Bundeswehr dadurch zunehmend infrage gestellt. Nach der deutschen Wiedervereinigung am 3. Oktober 1990 befanden sich immer noch mehr als 300.000 sowjetische Soldaten auf deutschem Territorium. Die 1989 in Westgruppe der Truppen (WGT) umbenannte GSSD sollte - so der Zwei-plus-Vier-Vertrag - bis 1994 vollst{\"a}ndig abziehen. Der Vertrag verbot auch den drei Westm{\"a}chten, in den neuen Bundesl{\"a}ndern milit{\"a}risch t{\"a}tig zu sein. Die f{\"u}r die Milit{\"a}raufkl{\"a}rung bis dahin unverzichtbaren Milit{\"a}rverbindungsmissionen der Westm{\"a}chte mussten ihre Dienste einstellen. Doch was geschah mit diesem „alliierten Erbe"? Wer {\"u}bernahm auf deutscher Seite die Aufkl{\"a}rung der sowjetischen Truppen und wer kontrollierte den Truppenabzug?  Die Studie untersucht die Rolle von Bundeswehr und BND beim Abzug der WGT zwischen 1990 und 1994 und fragt dabei nach Kooperation und Konkurrenz zwischen Streitkr{\"a}ften und Nachrichtendiensten. Welche milit{\"a}rischen und nachrichtendienstlichen Mittel und F{\"a}higkeiten stellte die Bundesregierung zur Bew{\"a}ltigung des Truppenabzugs zur Verf{\"u}gung, nachdem die westlichen Milit{\"a}rverbindungsmissionen aufgel{\"o}st wurden? Wie ver{\"a}nderten sich die Anforderungen an die milit{\"a}rische Auslandsaufkl{\"a}rung des BND? Inwieweit setzten sich Konkurrenz und Kooperation von Bundeswehr und BNDbeim Truppenabzug fort? Welche Rolle spielten dabei die einstigen Westm{\"a}chte? Die Arbeit versteht sich nicht nur als Beitrag zur Milit{\"a}rgeschichte, sondern auch zur deutschen Nachrichtendienstgeschichte.}, language = {de} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Jens Walter}, title = {Random dynamics in collective behavior - consensus, clustering \& extinction of populations}, doi = {10.25932/publishup-55372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553725}, school = {Universit{\"a}t Potsdam}, pages = {242}, year = {2022}, abstract = {The echo chamber model describes the development of groups in heterogeneous social networks. By heterogeneous social network we mean a set of individuals, each of whom represents exactly one opinion. The existing relationships between individuals can then be represented by a graph. The echo chamber model is a time-discrete model which, like a board game, is played in rounds. In each round, an existing relationship is randomly and uniformly selected from the network and the two connected individuals interact. If the opinions of the individuals involved are sufficiently similar, they continue to move closer together in their opinions, whereas in the case of opinions that are too far apart, they break off their relationship and one of the individuals seeks a new relationship. In this paper we examine the building blocks of this model. We start from the observation that changes in the structure of relationships in the network can be described by a system of interacting particles in a more abstract space. These reflections lead to the definition of a new abstract graph that encompasses all possible relational configurations of the social network. This provides us with the geometric understanding necessary to analyse the dynamic components of the echo chamber model in Part III. As a first step, in Part 7, we leave aside the opinions of the inidividuals and assume that the position of the edges changes with each move as described above, in order to obtain a basic understanding of the underlying dynamics. Using Markov chain theory, we find upper bounds on the speed of convergence of an associated Markov chain to its unique stationary distribution and show that there are mutually identifiable networks that are not apparent in the dynamics under analysis, in the sense that the stationary distribution of the associated Markov chain gives equal weight to these networks. In the reversible cases, we focus in particular on the explicit form of the stationary distribution as well as on the lower bounds of the Cheeger constant to describe the convergence speed. The final result of Section 8, based on absorbing Markov chains, shows that in a reduced version of the echo chamber model, a hierarchical structure of the number of conflicting relations can be identified. We can use this structure to determine an upper bound on the expected absorption time, using a quasi-stationary distribution. This hierarchy of structure also provides a bridge to classical theories of pure death processes. We conclude by showing how future research can exploit this link and by discussing the importance of the results as building blocks for a full theoretical understanding of the echo chamber model. Finally, Part IV presents a published paper on the birth-death process with partial catastrophe. The paper is based on the explicit calculation of the first moment of a catastrophe. This first part is entirely based on an analytical approach to second degree recurrences with linear coefficients. The convergence to 0 of the resulting sequence as well as the speed of convergence are proved. On the other hand, the determination of the upper bounds of the expected value of the population size as well as its variance and the difference between the determined upper bound and the actual value of the expected value. For these results we use almost exclusively the theory of ordinary nonlinear differential equations.}, language = {en} } @phdthesis{Ziege2022, author = {Ziege, Ricardo}, title = {Growth dynamics and mechanical properties of E. coli biofilms}, doi = {10.25932/publishup-55986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559869}, school = {Universit{\"a}t Potsdam}, pages = {xi, 123}, year = {2022}, abstract = {Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields.}, language = {en} } @phdthesis{Steding2022, author = {Steding, Svenja}, title = {Geochemical and Hydraulic Modeling of Cavernous Structures in Potash Seams}, doi = {10.25932/publishup-54818}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548182}, school = {Universit{\"a}t Potsdam}, pages = {IX, 104}, year = {2022}, abstract = {Salt deposits offer a variety of usage types. These include the mining of rock salt and potash salt as important raw materials, the storage of energy in man-made underground caverns, and the disposal of hazardous substances in former mines. The most serious risk with any of these usage types comes from the contact with groundwater or surface water. It causes an uncontrolled dissolution of salt rock, which in the worst case can result in the flooding or collapse of underground facilities. Especially along potash seams, cavernous structures can spread quickly, because potash salts show a much higher solubility than rock salt. However, as their chemical behavior is quite complex, previous models do not account for these highly soluble interlayers. Therefore, the objective of the present thesis is to describe the evolution of cavernous structures along potash seams in space and time in order to improve hazard mitigation during the utilization of salt deposits. The formation of cavernous structures represents an interplay of chemical and hydraulic processes. Hence, the first step is to systematically investigate the dissolution and precipitation reactions that occur when water and potash salt come into contact. For this purpose, a geochemical reaction model is used. The results show that the minerals are only partially dissolved, resulting in a porous sponge like structure. With the saturation of the solution increasing, various secondary minerals are formed, whose number and type depend on the original rock composition. Field data confirm a correlation between the degree of saturation and the distance from the center of the cavern, where solution is entering. Subsequently, the reaction model is coupled with a flow and transport code and supplemented by a novel approach called 'interchange'. The latter enables the exchange of solution and rock between areas of different porosity and mineralogy, and thus ultimately the growth of the cavernous structure. By means of several scenario analyses, cavern shape, growth rate and mineralogy are systematically investigated, taking also heterogeneous potash seams into account. The results show that basically four different cases can be distinguished, with mixed forms being a frequent occurrence in nature. The classification scheme is based on the dimensionless numbers P{\´e}clet and Damk{\"o}hler, and allows for a first assessment of the hazard potential. In future, the model can be applied to any field case, using measurement data for calibration. The presented research work provides a reactive transport model that is able to spatially and temporally characterize the propagation of cavernous structures along potash seams for the first time. Furthermore, it allows to determine thickness and composition of transition zones between cavern center and unaffected salt rock. The latter is particularly important in potash mining, so that natural cavernous structures can be located at an early stage and the risk of mine flooding can thus be reduced. The models may also contribute to an improved hazard prevention in the construction of storage caverns and the disposal of hazardous waste in salt deposits. Predictions regarding the characteristics and evolution of cavernous structures enable a better assessment of potential hazards, such as integrity or stability loss, as well as of suitable mitigation measures.}, language = {en} } @phdthesis{Richter2022, author = {Richter, Maximilian Jacob Enzo Amandus}, title = {Continental rift dynamics across the scales}, doi = {10.25932/publishup-55060}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550606}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2022}, abstract = {Localisation of deformation is a ubiquitous feature in continental rift dynamics and observed across drastically different time and length scales. This thesis comprises one experimental and two numerical modelling studies investigating strain localisation in (1) a ductile shear zone induced by a material heterogeneity and (2) in an active continental rift setting. The studies are related by the fact that the weakening mechanisms on the crystallographic and grain size scale enable bulk rock weakening, which fundamentally enables the formation of shear zones, continental rifts and hence plate tectonics. Aiming to investigate the controlling mechanisms on initiation and evolution of a shear zone, the torsion experiments of the experimental study were conducted in a Patterson type apparatus with strong Carrara marble cylinders with a weak, planar Solnhofen limestone inclusion. Using state-of-the-art numerical modelling software, the torsion experiments were simulated to answer questions regarding localisation procedure like stress distribution or the impact of rheological weakening. 2D numerical models were also employed to integrate geophysical and geological data to explain characteristic tectonic evolution of the Southern and Central Kenya Rift. Key elements of the numerical tools are a randomized initial strain distribution and the usage of strain softening. During the torsion experiments, deformation begins to localise at the limestone inclusion tips in a process zone, which propagates into the marble matrix with increasing deformation until a ductile shear zone is established. Minor indicators for coexisting brittle deformation are found close to the inclusion tip and presumed to slightly facilitate strain localisation besides the dominant ductile deformation processes. The 2D numerical model of the torsion experiment successfully predicts local stress concentration and strain rate amplification ahead of the inclusion in first order agreement with the experimental results. A simple linear parametrization of strain weaking enables high accuracy reproduction of phenomenological aspects of the observed weakening. The torsion experiments suggest that loading conditions do not affect strain localisation during high temperature deformation of multiphase material with high viscosity contrasts. A numerical simulation can provide a way of analysing the process zone evolution virtually and extend the examinable frame. Furthermore, the nested structure and anastomosing shape of an ultramylonite band was mimicked with an additional second softening step. Rheological weakening is necessary to establish a shear zone in a strong matrix around a weak inclusion and for ultramylonite formation. Such strain weakening laws are also incorporated into the numerical models of the Southern and Central Kenya Rift that capture the characteristic tectonic evolution. A three-stage early rift evolution is suggested that starts with (1) the accommodation of strain by a single border fault and flexure of the hanging-wall crust, after which (2) faulting in the hanging-wall and the basin centre increases before (3) the early-stage asymmetry is lost and basinward localisation of deformation occurs. Along-strike variability of rifts can be produced by modifying the initial random noise distribution. In summary, the three studies address selected aspects of the broad range of mechanisms and processes that fundamentally enable the deformation of rock and govern the localisation patterns across the scales. In addition to the aforementioned results, the first and second manuscripts combined, demonstrate a procedure to find new or improve on existing numerical formulations for specific rheologies and their dynamic weakening. These formulations are essential in addressing rock deformation from the grain to the global scale. As within the third study of this thesis, where geodynamic controls on the evolution of a rift were examined and acquired by the integration of geological and geophysical data into a numerical model.}, language = {en} } @phdthesis{Tattarini2022, author = {Tattarini, Giulia}, title = {A job is good, but is a good job healthier?}, doi = {10.25932/publishup-53672}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536723}, school = {Universit{\"a}t Potsdam}, pages = {182}, year = {2022}, abstract = {What are the consequences of unemployment and precarious employment for individuals' health in Europe? What are the moderating factors that may offset (or increase) the health consequences of labor-market risks? How do the effects of these risks vary across different contexts, which differ in their institutional and cultural settings? Does gender, regarded as a social structure, play a role, and how? To answer these questions is the aim of my cumulative thesis. This study aims to advance our knowledge about the health consequences that unemployment and precariousness cause over the life course. In particular, I investigate how several moderating factors, such as gender, the family, and the broader cultural and institutional context, may offset or increase the impact of employment instability and insecurity on individual health. In my first paper, 'The buffering role of the family in the relationship between job loss and self-perceived health: Longitudinal results from Europe, 2004-2011', I and my co-authors measure the causal effect of job loss on health and the role of the family and welfare states (regimes) as moderating factors. Using EU-SILC longitudinal data (2004-2011), we estimate the probability of experiencing 'bad health' following a transition to unemployment by applying linear probability models and undertake separate analyses for men and women. Firstly, we measure whether changes in the independent variable 'job loss' lead to changes in the dependent variable 'self-rated health' for men and women separately. Then, by adding into the model different interaction terms, we measure the moderating effect of the family, both in terms of emotional and economic support, and how much it varies across different welfare regimes. As an identification strategy, we first implement static fixed-effect panel models, which control for time-varying observables and indirect health selection—i.e., constant unobserved heterogeneity. Secondly, to control for reverse causality and path dependency, we implement dynamic fixed-effect panel models, adding a lagged dependent variable to the model. We explore the role of the family by focusing on close ties within households: we consider the presence of a stable partner and his/her working status as a source of social and economic support. According to previous literature, having a partner should reduce the stress from adverse events, thanks to the symbolic and emotional dimensions that such a relationship entails, regardless of any economic benefits. Our results, however, suggest that benefits linked to the presence of a (female) partner also come from the financial stability that (s)he can provide in terms of a second income. Furthermore, we find partners' employment to be at least as important as the mere presence of the partner in reducing the negative effect of job loss on the individual's health by maintaining the household's standard of living and decreasing economic strain on the family. Our results are in line with previous research, which has highlighted that some people cope better than others with adverse life circumstances, and the support provided by the family is a crucial resource in that regard. We also reported an important interaction between the family and the welfare state in moderating the health consequences of unemployment, showing how the compensation effect of the family varies across welfare regimes. The family plays a decisive role in cushioning the adverse consequences of labor market risks in Southern and Eastern welfare states, characterized by less developed social protection systems and -especially the Southern - high level of familialism. The first paper also found important gender differences concerning job loss, family and welfare effects. Of particular interest is the evidence suggesting that health selection works differently for men and women, playing a more prominent role for women than for men in explaining the relationship between job loss and self-perceived health. The second paper, 'Gender roles and selection mechanisms across contexts: A comparative analysis of the relationship between unemployment, self-perceived health, and gender.' investigates more in-depth the gender differential in health driven by unemployment. Being a highly contested issue in literature, we aim to study whether men are more penalized than women or the other way around and the mechanisms that may explain the gender difference. To do that, we rely on two theoretical arguments: the availability of alternative roles and social selection. The first argument builds on the idea that men and women may compensate for the detrimental health consequences of unemployment through the commitment to 'alternative roles,' which can provide for the resources needed to fulfill people's socially constructed needs. Notably, the availability of alternative options depends on the different positions that men and women have in society. Further, we merge the availability of the 'alternative roles' argument with the health selection argument. We assume that health selection could be contingent on people's social position as defined by gender and, thus, explain the gender differential in the relationship between unemployment and health. Ill people might be less reluctant to fall or remain (i.e., self-select) in unemployment if they have alternative roles. In Western societies, women generally have more alternative roles than men and thus more discretion in their labor market attachment. Therefore, health selection should be stronger for them, explaining why unemployment is less menace for women than for their male counterparts. Finally, relying on the idea of different gender regimes, we extended these arguments to comparison across contexts. For example, in contexts where being a caregiver is assumed to be women's traditional and primary roles and the primary breadwinner role is reserved to men, unemployment is less stigmatized, and taking up alternative roles is more socially accepted for women than for men (Hp.1). Accordingly, social (self)selection should be stronger for women than for men in traditional contexts, where, in the case of ill-health, the separation from work is eased by the availability of alternative roles (Hp.2). By focusing on contexts that are representative of different gender regimes, we implement a multiple-step comparative approach. Firstly, by using EU-SILC longitudinal data (2004-2015), our analysis tests gender roles and selection mechanisms for Sweden and Italy, representing radically different gender regimes, thus providing institutional and cultural variation. Then, we limit institutional heterogeneity by focusing on Germany and comparing East- and West-Germany and older and younger cohorts—for West-Germany (SOEP data 1995-2017). Next, to assess the differential impact of unemployment for men and women, we compared (unemployed and employed) men with (unemployed and employed) women. To do so, we calculate predicted probabilities and average marginal effect from two distinct random-effects probit models. Our first step is estimating random-effects models that assess the association between unemployment and self-perceived health, controlling for observable characteristics. In the second step, our fully adjusted model controls for both direct and indirect selection. We do this using dynamic correlated random-effects (CRE) models. Further, based on the fully adjusted model, we test our hypotheses on alternative roles (Hp.1) by comparing several contexts - models are estimated separately for each context. For this hypothesis, we pool men and women and include an interaction term between unemployment and gender, which has the advantage to allow for directly testing whether gender differences in the effect of unemployment exist and are statistically significant. Finally, we test the role of selection mechanisms (Hp.2), using the KHB method to compare coefficients across nested nonlinear models. Specifically, we test the role of selection for the relationship between unemployment and health by comparing the partially-adjusted and fully-adjusted models. To allow selection mechanisms to operate differently between genders, we estimate separate models for men and women. We found support to our first hypotheses—the context where people are embedded structures the relationship between unemployment, health, and gender. We found no gendered effect of unemployment on health in the egalitarian context of Sweden. Conversely, in the traditional context of Italy, we observed substantive and statistically significant gender differences in the effect of unemployment on bad health, with women suffering less than men. We found the same pattern for comparing East and West Germany and younger and older cohorts in West Germany. On the contrary, our results did not support our theoretical argument on social selection. We found that in Sweden, women are more selected out of employment than men. In contrast, in Italy, health selection does not seem to be the primary mechanism behind the gender differential—Italian men and women seem to be selected out of employment to the same extent. Namely, we do not find any evidence that health selection is stronger for women in more traditional countries (Hp2), despite the fact that the institutional and the cultural context would offer them a more comprehensive range of 'alternative roles' relative to men. Moreover, our second hypothesis is also rejected in the second and third comparisons, where the cross-country heterogeneity is reduced to maximize cultural differences within the same institutional context. Further research that addresses selection into inactivity is needed to evaluate the interplay between selection and social roles across gender regimes. While the health consequences of unemployment have been on the research agenda for a pretty long time, the interest in precarious employment—defined as the linking of the vulnerable worker to work that is characterized by uncertainty and insecurity concerning pay, the stability of the work arrangement, limited access to social benefits, and statutory protections—has emerged only later. Since the 80s, scholars from different disciplines have raised concerns about the social consequences of de-standardization of employment relationships. However, while work has become undoubtedly more precarious, very little is known about its causal effect on individual health and the role of gender as a moderator. These questions are at the core of my third paper : 'Bad job, bad health? A longitudinal analysis of the interaction between precariousness, gender and self-perceived health in Germany'. Herein, I investigate the multidimensional nature of precarious employment and its causal effect on health, particularly focusing on gender differences. With this paper, I aim at overcoming three major shortcomings of earlier studies: The first one regards the cross-sectional nature of data that prevents the authors from ruling out unobserved heterogeneity as a mechanism for the association between precarious employment and health. Indeed, several unmeasured individual characteristics—such as cognitive abilities—may confound the relationship between precarious work and health, leading to biased results. Secondly, only a few studies have directly addressed the role of gender in shaping the relationship. Moreover, available results on the gender differential are mixed and inconsistent: some found precarious employment being more detrimental for women's health, while others found no gender differences or stronger negative association for men. Finally, previous attempts to an empirical translation of the employment precariousness (EP) concept have not always been coherent with their theoretical framework. EP is usually assumed to be a multidimensional and continuous phenomenon; it is characterized by different dimensions of insecurity that may overlap in the same job and lead to different "degrees of precariousness." However, researchers have predominantly focused on one-dimensional indicators—e.g., temporary employment, subjective job insecurity—to measure EP and study the association with health. Besides the fact that this approach partially grasps the phenomenon's complexity, the major problem is the inconsistency of evidence that it has produced. Indeed, this line of inquiry generally reveals an ambiguous picture, with some studies finding substantial adverse effects of temporary over permanent employment, while others report only minor differences. To measure the (causal) effect of precarious work on self-rated health and its variation by gender, I focus on Germany and use four waves from SOEP data (2003, 2007, 2011, and 2015). Germany is a suitable context for my study. Indeed, since the 1980s, the labor market and welfare system have been restructured in many ways to increase the German economy's competitiveness in the global market. As a result, the (standard) employment relationship has been de-standardized: non-standard and atypical employment arrangements—i.e., part-time work, fixed-term contracts, mini-jobs, and work agencies—have increased over time while wages have lowered, even among workers with standard work. In addition, the power of unions has also fallen over the last three decades, leaving a large share of workers without collective protection. Because of this process of de-standardization, the link between wage employment and strong social rights has eroded, making workers more powerless and more vulnerable to labor market risks than in the past. EP refers to this uneven distribution of power in the employment relationship, which can be detrimental to workers' health. Indeed, by affecting individuals' access to power and other resources, EP puts precarious workers at risk of experiencing health shocks and influences their ability to gain and accumulate health advantages (Hp.1). Further, the focus on Germany allows me to investigate my second research question on the gender differential. Germany is usually regarded as a traditionalist gender regime: a context characterized by a configuration of roles. Here, being a caregiver is assumed to be women's primary role, whereas the primary breadwinner role is reserved for men. Although many signs of progress have been made over the last decades towards a greater equalization of opportunities and more egalitarianism, the breadwinner model has barely changed towards a modified version. Thus, women usually take on the double role of workers (the so-called secondary earner) and caregivers, and men still devote most of their time to paid work activities. Moreover, the overall upward trend towards more egalitarian gender ideologies has leveled off over the last decades, moving notably towards more traditional gender ideologies. In this setting, two alternative hypotheses are possible. Firstly, I assume that the negative relationship between EP and health is stronger for women than for men. This is because women are systematically more disadvantaged than men in the public and private spheres of life, having less access to formal and informal sources of power. These gender-related power asymmetries may interact with EP-related power asymmetries resulting in a stronger effect of EP on women's health than on men's health (Hp.2). An alternative way of looking at the gender differential is to consider the interaction that precariousness might have with men's and women's gender identities. According to this view, the negative relationship between EP and health is weaker for women than for men (Hp.2a). In a society with a gendered division of labor and a strong link between masculine identities and stable and well-rewarded job—i.e., a job that confers the role of primary family provider—a male worker with precarious employment might violate the traditional male gender role. Men in precarious jobs may perceive themselves (and by others) as possessing a socially undesirable characteristic, which conflicts with the stereotypical idea of themselves as the male breadwinner. Engaging in behaviors that contradict stereotypical gender identity may decrease self-esteem and foster feelings of inferiority, helplessness, and jealousy, leading to poor health. I develop a new indicator of EP that empirically translates a definition of EP as a multidimensional and continuous phenomenon. I assume that EP is a latent construct composed of seven dimensions of insecurity chosen according to the theory and previous empirical research: Income insecurity, social insecurity, legal insecurity, employment insecurity, working-time insecurity, representation insecurity, worker's vulnerability. The seven dimensions are proxied by eight indicators available in the four waves of the SOEP dataset. The EP composite indicator is obtained by performing a multiple correspondence analysis (MCA) on the eight indicators. This approach aims to construct a summary scale in which all dimensions contribute jointly to the measured experience of precariousness and its health impact. Further, the relationship between EP and 'general self-perceived health' is estimated by applying ordered probit random-effects estimators and calculating average marginal effect (further AME). Then, to control for unobserved heterogeneity, I implement correlated random-effects models that add to the model the within-individual means of the time-varying independent variables. To test the significance of the gender differential, I add an interaction term between EP and gender in the fully adjusted model in the pooled sample. My correlated random-effects models showed EP's negative and substantial 'effect' on self-perceived health for both men and women. Although nonsignificant, the evidence seems in line with previous cross-sectional literature. It supports the hypothesis that employment precariousness could be detrimental to workers' health. Further, my results showed the crucial role of unobserved heterogeneity in shaping the health consequences of precarious employment. This is particularly important as evidence accumulates, yet it is still mostly descriptive. Moreover, my results revealed a substantial difference among men and women in the relationship between EP and health: when EP increases, the risk of experiencing poor health increases much more for men than for women. This evidence falsifies previous theory according to whom the gender differential is contingent on the structurally disadvantaged position of women in western societies. In contrast, they seem to confirm the idea that men in precarious work could experience role conflict to a larger extent than women, as their self-standard is supposed to be the stereotypical breadwinner worker with a good and well-rewarded job. Finally, results from the multiple correspondence analysis contribute to the methodological debate on precariousness, showing that a multidimensional and continuous indicator can express a latent variable of EP. All in all, complementarities are revealed in the results of unemployment and employment precariousness, which have two implications: Policy-makers need to be aware that the total costs of unemployment and precariousness go far beyond the economic and material realm penetrating other fundamental life domains such as individual health. Moreover, they need to balance the trade-off between protecting adequately unemployed people and fostering high-quality employment in reaction to the highlighted market pressures. In this sense, the further development of a (universalistic) welfare state certainly helps mitigate the adverse health effects of unemployment and, therefore, the future costs of both individuals' health and welfare spending. In addition, the presence of a working partner is crucial for reducing the health consequences of employment instability. Therefore, policies aiming to increase female labor market participation should be promoted, especially in those contexts where the welfare state is less developed. Moreover, my results support the significance of taking account of a gender perspective in health research. The findings of the three articles show that job loss, unemployment, and precarious employment, in general, have adverse effects on men's health but less or absent consequences for women's health. Indeed, this suggests the importance of labor and health policies that consider and further distinguish the specific needs of the male and female labor force in Europe. Nevertheless, a further implication emerges: the health consequences of employment instability and de-standardization need to be investigated in light of the gender arrangements and the transforming gender relationships in specific cultural and institutional contexts. My results indeed seem to suggest that women's health advantage may be a transitory phenomenon, contingent on the predominant gendered institutional and cultural context. As the structural difference between men's and women's position in society is eroded, egalitarianism becomes the dominant normative status, so will probably be the gender difference in the health consequences of job loss and precariousness. Therefore, while gender equality in opportunities and roles is a desirable aspect for contemporary societies and a political goal that cannot be postponed further, this thesis raises a further and maybe more crucial question: What kind of equality should be pursued to provide men and women with both good life quality and equal chances in the public and private spheres? In this sense, I believe that social and labor policies aiming to reduce gender inequality in society should focus on improving women's integration into the labor market, implementing policies targeting men, and facilitating their involvement in the private sphere of life. Equal redistribution of social roles could activate a crucial transformation of gender roles and the cultural models that sustain and still legitimate gender inequality in Western societies.}, language = {en} } @phdthesis{Gaebert2022, author = {G{\"a}bert, Chris}, title = {Light-responsive polymer systems aiming towards programmable friction}, doi = {10.25932/publishup-55338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553380}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 108, XXVI}, year = {2022}, abstract = {The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol\% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Simsek2022, author = {Simsek, Ibrahim}, title = {Ink-based preparation of chalcogenide perovskites as thin films for PV applications}, doi = {10.25932/publishup-57271}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572711}, school = {Universit{\"a}t Potsdam}, pages = {iv, 113}, year = {2022}, abstract = {The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc.}, language = {en} } @phdthesis{Brill2022, author = {Brill, Fabio Alexander}, title = {Applications of machine learning and open geospatial data in flood risk modelling}, doi = {10.25932/publishup-55594}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555943}, school = {Universit{\"a}t Potsdam}, pages = {xix, 124}, year = {2022}, abstract = {Der technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle auf Basis immer gr{\"o}ßerer Datens{\"a}tze zu produzieren. F{\"u}r das Risikomanagement von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage notwendig, z.B. in der Auswertung von Beobachtungsdaten, f{\"u}r die Vorhersage von Gefahrenszenarien, oder zur statistischen Absch{\"a}tzung der zu erwartenden Sch{\"a}den. Es stellt sich also die Frage, inwiefern moderne Modellierungsans{\"a}tze wie das maschinelle Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden k{\"o}nnen. Zus{\"a}tzlich ist im Hinblick auf die Datenverf{\"u}gbarkeit und -zug{\"a}nglichkeit ein Trend zur {\"O}ffnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die M{\"o}glichkeiten und Grenzen des maschinellen Lernens und frei verf{\"u}gbarer Geodaten auf dem Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses {\"u}bergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet und detailliert betrachtet. Eine prominente Datenquelle im Bereich Hochwasser ist die satellitenbasierte Kartierung von {\"U}berflutungsfl{\"a}chen, die z.B. {\"u}ber den Copernicus Service der Europ{\"a}ischen Union frei zur Verf{\"u}gung gestellt werden. Große Hoffnungen werden in der wissenschaftlichen Literatur in diese Produkte gesetzt, sowohl f{\"u}r die akute Unterst{\"u}tzung der Einsatzkr{\"a}fte im Katastrophenfall, als auch in der Modellierung mittels hydrodynamischer Modelle oder zur Schadensabsch{\"a}tzung. Daher wurde ein Fokus in dieser Arbeit auf die Untersuchung dieser Flutmasken gelegt. Aus der Beobachtung, dass die Qualit{\"a}t dieser Produkte in bewaldeten und urbanen Gebieten unzureichend ist, wurde ein Verfahren zur nachtr{\"a}glichenVerbesserung mittels maschinellem Lernen entwickelt. Das Verfahren basiert auf einem Klassifikationsalgorithmus der nur Trainingsdaten von einer vorherzusagenden Klasse ben{\"o}tigt, im konkreten Fall also Daten von {\"U}berflutungsfl{\"a}chen, nicht jedoch von der negativen Klasse (trockene Gebiete). Die Anwendung f{\"u}r Hurricane Harvey in Houston zeigt großes Potenzial der Methode, abh{\"a}ngig von der Qualit{\"a}t der urspr{\"u}nglichen Flutmaske. Anschließend wird anhand einer prozessbasierten Modellkette untersucht, welchen Einfluss implementierte physikalische Prozessdetails auf das vorhergesagte statistische Risiko haben. Es wird anschaulich gezeigt, was eine Risikostudie basierend auf etablierten Modellen leisten kann. Solche Modellketten sind allerdings bereits f{\"u}r Flusshochwasser sehr komplex, und f{\"u}r zusammengesetzte oder kaskadierende Ereignisse mit Starkregen, Sturzfluten, und weiteren Prozessen, kaum vorhanden. Im vierten Kapitel dieser Arbeit wird daher getestet, ob maschinelles Lernen auf Basis von vollst{\"a}ndigen Schadensdaten einen direkteren Weg zur Schadensmodellierung erm{\"o}glicht, der die explizite Konzeption einer solchen Modellkette umgeht. Dazu wird ein staatlich erhobener Datensatz der gesch{\"a}digten Geb{\"a}ude w{\"a}hrend des schweren El Ni{\~n}o Ereignisses 2017 in Peru verwendet. In diesem Kontext werden auch die M{\"o}glichkeiten des Data-Mining zur Extraktion von Prozessverst{\"a}ndnis ausgelotet. Es kann gezeigt werden, dass diverse frei verf{\"u}gbare Geodaten n{\"u}tzliche Informationen f{\"u}r die Gefahren- und Schadensmodellierung von komplexen Flutereignissen liefern, z.B. satellitenbasierte Regenmessungen, topographische und hydrographische Information, kartierte Siedlungsfl{\"a}chen, sowie Indikatoren aus Spektraldaten. Zudem zeigen sich Erkenntnisse zu den Sch{\"a}digungsprozessen, die im Wesentlichen mit den vorherigen Erwartungen in Einklang stehen. Die maximale Regenintensit{\"a}t wirkt beispielsweise in St{\"a}dten und steilen Schluchten st{\"a}rker sch{\"a}digend, w{\"a}hrend die Niederschlagssumme in tiefliegenden Flussgebieten und bewaldeten Regionen als aussagekr{\"a}ftiger befunden wurde. L{\"a}ndliche Gebiete in Peru weisen in der pr{\"a}sentierten Studie eine h{\"o}here Vulnerabilit{\"a}t als die Stadtgebiete auf. Jedoch werden auch die grunds{\"a}tzlichen Grenzen der Methodik und die Abh{\"a}ngigkeit von spezifischen Datens{\"a}tzen and Algorithmen offenkundig. In der {\"u}bergreifenden Diskussion werden schließlich die verschiedenen Methoden - prozessbasierte Modellierung, pr{\"a}diktives maschinelles Lernen, und Data-Mining - mit Blick auf die Gesamtfragestellungen evaluiert. Im Bereich der Gefahrenbeobachtung scheint eine Fokussierung auf neue Algorithmen sinnvoll. Im Bereich der Gefahrenmodellierung, insbesondere f{\"u}r Flusshochwasser, wird eher die Verbesserung von physikalischen Modellen, oder die Integration von prozessbasierten und statistischen Verfahren angeraten. In der Schadensmodellierung fehlen nach wie vor die großen repr{\"a}sentativen Datens{\"a}tze, die f{\"u}r eine breite Anwendung von maschinellem Lernen Voraussetzung ist. Daher ist die Verbesserung der Datengrundlage im Bereich der Sch{\"a}den derzeit als wichtiger einzustufen als die Auswahl der Algorithmen.}, language = {en} } @phdthesis{Jongejans2022, author = {Jongejans, Loeka Laura}, title = {Organic matter stored in ice-rich permafrost}, doi = {10.25932/publishup-56491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564911}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 178}, year = {2022}, abstract = {The Arctic is changing rapidly and permafrost is thawing. Especially ice-rich permafrost, such as the late Pleistocene Yedoma, is vulnerable to rapid and deep thaw processes such as surface subsidence after the melting of ground ice. Due to permafrost thaw, the permafrost carbon pool is becoming increasingly accessible to microbes, leading to increased greenhouse gas emissions, which enhances the climate warming. The assessment of the molecular structure and biodegradability of permafrost organic matter (OM) is highly needed. My research revolves around the question "how does permafrost thaw affect its OM storage?" More specifically, I assessed (1) how molecular biomarkers can be applied to characterize permafrost OM, (2) greenhouse gas production rates from thawing permafrost, and (3) the quality of OM of frozen and (previously) thawed sediments. I studied deep (max. 55 m) Yedoma and thawed Yedoma permafrost sediments from Yakutia (Sakha Republic). I analyzed sediment cores taken below thermokarst lakes on the Bykovsky Peninsula (southeast of the Lena Delta) and in the Yukechi Alas (Central Yakutia), and headwall samples from the permafrost cliff Sobo-Sise (Lena Delta) and the retrogressive thaw slump Batagay (Yana Uplands). I measured biomarker concentrations of all sediment samples. Furthermore, I carried out incubation experiments to quantify greenhouse gas production in thawing permafrost. I showed that the biomarker proxies are useful to assess the source of the OM and to distinguish between OM derived from terrestrial higher plants, aquatic plants and microbial activity. In addition, I showed that some proxies help to assess the degree of degradation of permafrost OM, especially when combined with sedimentological data in a multi-proxy approach. The OM of Yedoma is generally better preserved than that of thawed Yedoma sediments. The greenhouse gas production was highest in the permafrost sediments that thawed for the first time, meaning that the frozen Yedoma sediments contained most labile OM. Furthermore, I showed that the methanogenic communities had established in the recently thawed sediments, but not yet in the still-frozen sediments. My research provided the first molecular biomarker distributions and organic carbon turnover data as well as insights in the state and processes in deep frozen and thawed Yedoma sediments. These findings show the relevance of studying OM in deep permafrost sediments.}, language = {en} } @phdthesis{Siegmund2022, author = {Siegmund, Nicole}, title = {Wind driven soil particle uptake Quantifying drivers of wind erosion across the particle size spectrum}, doi = {10.25932/publishup-57489}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574897}, school = {Universit{\"a}t Potsdam}, pages = {ix, 56}, year = {2022}, abstract = {Among the multitude of geomorphological processes, aeolian shaping processes are of special character, Pedogenic dust is one of the most important sources of atmospheric aerosols and therefore regarded as a key player for atmospheric processes. Soil dust emissions, being complex in composition and properties, influence atmospheric processes and air quality and has impacts on other ecosystems. In this because even though their immediate impact can be considered low (exceptions exist), their constant and large-scale force makes them a powerful player in the earth system. dissertation, we unravel a novel scientific understanding of this complex system based on a holistic dataset acquired during a series of field experiments on arable land in La Pampa, Argentina. The field experiments as well as the generated data provide information about topography, various soil parameters, the atmospheric dynamics in the very lower atmosphere (4m height) as well as measurements regarding aeolian particle movement across a wide range of particle size classes between 0.2μm up to the coarse sand. The investigations focus on three topics: (a) the effects of low-scale landscape structures on aeolian transport processes of the coarse particle fraction, (b) the horizontal and vertical fluxes of the very fine particles and (c) the impact of wind gusts on particle emissions. Among other considerations presented in this thesis, it could in particular be shown, that even though the small-scale topology does have a clear impact on erosion and deposition patterns, also physical soil parameters need to be taken into account for a robust statistical modelling of the latter. Furthermore, specifically the vertical fluxes of particulate matter have different characteristics for the particle size classes. Finally, a novel statistical measure was introduced to quantify the impact of wind gusts on the particle uptake and its application on the provided data set. The aforementioned measure shows significantly increased particle concentrations during points in time defined as gust event. With its holistic approach, this thesis further contributes to the fundamental understanding of how atmosphere and pedosphere are intertwined and affect each other.}, language = {en} } @phdthesis{Pellegrino2022, author = {Pellegrino, Antonio}, title = {miRNA profiling for diagnosis of chronic pain in polyneuropathy}, doi = {10.25932/publishup-58385}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583858}, school = {Universit{\"a}t Potsdam}, pages = {viii, 97, xi}, year = {2022}, abstract = {This dissertation aimed to determine differential expressed miRNAs in the context of chronic pain in polyneuropathy. For this purpose, patients with chronic painful polyneuropathy were compared with age matched healthy patients. Taken together, all miRNA pre library preparation quality controls were successful and none of the samples was identified as an outlier or excluded for library preparation. Pre sequencing quality control showed that library preparation worked for all samples as well as that all samples were free of adapter dimers after BluePippin size selection and reached the minimum molarity for further processing. Thus, all samples were subjected to sequencing. The sequencing control parameters were in their optimal range and resulted in valid sequencing results with strong sample to sample correlation for all samples. The resulting FASTQ file of each miRNA library was analyzed and used to perform a differential expression analysis. The differentially expressed and filtered miRNAs were subjected to miRDB to perform a target prediction. Three of those four miRNAs were downregulated: hsa-miR-3135b, hsa-miR-584-5p and hsa-miR-12136, while one was upregulated: hsa-miR-550a-3p. miRNA target prediction showed that chronic pain in polyneuropathy might be the result of a combination of miRNA mediated high blood flow/pressure and neural activity dysregulations/disbalances. Thus, leading to the promising conclusion that these four miRNAs could serve as potential biomarkers for the diagnosis of chronic pain in polyneuropathy. Since TRPV1 seems to be one of the major contributors of nociception and is associated with neuropathic pain, the influence of PKA phosphorylated ARMS on the sensitivity of TRPV1 as well as the part of AKAP79 during PKA phosphorylation of ARMS was characterized. Therefore, possible PKA-sites in the sequence of ARMS were identified. This revealed five canonical PKA-sites: S882, T903, S1251/52, S1439/40 and S1526/27. The single PKA-site mutants of ARMS revealed that PKA-mediated ARMS phosphorylation seems not to influence the interaction rate of TRPV1/ARMS. While phosphorylation of ARMST903 does not increase the interaction rate with TRPV1, ARMSS1526/27 is probably not phosphorylated and leads to an increased interaction rate. The calcium flux measurements indicated that the higher the interaction rate of TRPV1/ARMS, the lower the EC50 for capsaicin of TRPV1, independent of the PKA phosphorylation status of ARMS. In addition, the western blot analysis confirmed the previously observed TRPV1/ARMS interaction. More importantly, AKAP79 seems to be involved in the TRPV1/ARMS/PKA signaling complex. To overcome the problem of ARMS-mediated TRPV1 sensitization by interaction, ARMS was silenced by shRNA. ARMS silencing resulted in a restored TRPV1 desensitization without affecting the TRPV1 expression and therefore could be used as new topical therapeutic analgesic alternative to stop ARMS mediated TRPV1 sensitization.}, language = {en} }