@phdthesis{Zhang2019, author = {Zhang, Shuhao}, title = {Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 161}, year = {2019}, abstract = {This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary.}, language = {en} } @phdthesis{Borisova2012, author = {Borisova, Dimitriya}, title = {Feedback active coatings based on mesoporous silica containers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63505}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Metalle werden oft w{\"a}hrend ihrer Anwendung korrosiven Bedingungen ausgesetzt, was ihre Alterungsbest{\"a}ndigkeit reduziert. Deswegen werden korrosionsanf{\"a}llige Metalle, wie Aluminiumlegierungen mit Schutzbeschichtungen versehen, um den Korrosionsprozess aktiv oder passiv zu verhindern. Die klassischen Schutzbeschichtungen funktionieren als physikalische Barriere zwischen Metall und korrosiver Umgebung und bieten einen passiven Korrosionsschutz nur, wenn sie unbesch{\"a}digt sind. Im Gegensatz dazu kann die Korrosion auch im Fall einer Besch{\"a}digung mittels aktiver Schutzbeschichtungen gehemmt werden. Chromathaltige Beschichtungen bieten heutzutage den besten aktiven Korrosionsschutz f{\"u}r Aluminiumlegierungen. Aufgrund ihrer Giftigkeit wurden diese weltweit verboten und m{\"u}ssen durch neue umweltfreundliche Schutzbeschichtungen ersetzt werden. Ein potentieller Ersatz sind Schutzbeschichtungen mit integrierten Nano- und Mikrobeh{\"a}ltern, die mit ungiftigem Inhibitor gef{\"u}llt sind. In dieser Arbeit werden die Entwicklung und Optimierung solcher aktiver Schutzbeschichtungen f{\"u}r die industriell wichtige Aluminiumlegierung AA2024-T3 dargestellt Mesopor{\"o}se Silika-Beh{\"a}lter wurden mit dem ungiftigen Inhibitor (2-Mercaptobenzothiazol) beladen und dann in die Matrix anorganischer (SiOx/ZrOx) oder organischer (wasserbasiert) Schichten dispergiert. Zwei Sorten von Silika-Beh{\"a}ltern mit unterschiedlichen Gr{\"o}ßen (d ≈ 80 and 700 nm) wurden verwendet. Diese haben eine große spezifische Oberfl{\"a}che (≈ 1000 m² g-1), eine enge Porengr{\"o}ßenverteilung mit mittlerer Porenweite ≈ 3 nm und ein großes Porenvolumen (≈ 1 mL g-1). Dank dieser Eigenschaften k{\"o}nnen große Inhibitormengen im Beh{\"a}lterinneren adsorbiert und gehalten werden. Die Inhibitormolek{\"u}le werden bei korrosionsbedingter Erh{\"o}hung des pH-Wertes gel{\"o}st und freigegeben. Die Konzentration, Position und Gr{\"o}ße der integrierten Beh{\"a}lter wurden variiert um die besten Bedingungen f{\"u}r einen optimalen Korrosionsschutz zu bestimmen. Es wurde festgestellt, dass eine gute Korrosionsschutzleistung durch einen Kompromiss zwischen ausreichender Inhibitormenge und guten Barriereeigenschaften hervorgerufen wird. Diese Studie erweitert das Wissen {\"u}ber die wichtigsten Faktoren, die den Korrosionsschutz beeinflussen. Somit wurde die Entwicklung effizienter, aktiver Schutzbeschichtungen erm{\"o}glicht, die auf mit Inhibitor beladenen Beh{\"a}ltern basieren.}, language = {en} } @phdthesis{RuizRodriguez2019, author = {Ruiz Rodriguez, Janete Lorena}, title = {Osmotic pressure effects on collagen mimetic peptides}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Collagen is the most abundant protein in mammals. In many tissues, collagen molecules assemble to form a hierarchical structure. In the smallest supramolecular unit, named fibril, each molecule is displaced in the axial direction with respect to its neighbors. This staggering creates a periodic gap and overlap regions, where the gap regions exhibit 20\% less density. These fibril-forming collagens play an essential role in the strength of connective tissues. Despite much effort, directed at understanding collagen function and regulation, the influence of the chemical environment on the local structural and mechanical properties remains poorly understood. Recent studies, aimed at elucidating the effect of osmotic pressure, showed that collagen contracts upon water removal. This observation highlights the importance of water for the stabilization and mechanics of the collagen molecule. Using collagen mimetic peptides (CMPs), which fold into triple helical structures reminiscent of natural collagen, the primary goal of this work was to investigate the effect of the osmotic pressure on specific collagen-mimetic sequences. CMPs were used as the model system as they provide sequence control, which is essential for discriminating local from global structural changes and for relating the observed effects to existing knowledge about the full-length collagen molecule. Of specific interest was the structure of individual collagen triple helices as well as their organization into self-assembled higher order structures. These key structural features were monitored with infrared spectroscopy (IR) and synchrotron X-ray scattering, while varying the osmotic pressure. For controlling the osmotic pressure, CMP powder samples were incubated in air of defined relative humidity, ranging from dry conditions to highly "humid". In addition, to obtain more biologically relevant conditions, the CMPs were measured in ultrapure water and in solutions containing small molecule osmolytes. Using the sequences (Pro-Pro-Gly)10, (Pro-Hyp-Gly)10 and (Hyp-Hyp-Gly)10, it was shown that CMPs with different degrees of proline hydroxylation (Hyp = hydroxyproline) exhibit a sequence-specific response to osmotic pressure. IR spectroscopy revealed that osmotic pressure changes affect the strength of the triple helix stabilizing, interchain hydrogen bond and that the extent of this change depends on the degree of hydroxylation. X-ray scattering experiments further showed that changes in osmotic pressure affect both the molecular length as well as the higher order organization of CMPs. Starting from a pseudo-hexagonal packing in the dry state, all three CMPs showed isotropic swelling when increasing the water content to approximately 1.2 water molecules per amino acid, again to different extents depending on the degree of hydroxylation. When increasing the water content further, this pseudo-hexagonal arrangement breaks down. In the fully hydrated state, each CMP is characterized by its own specific and more complex packing geometry. While these changes in the lateral packing arrangement suggest swelling upon hydration, an overall decrease of the molecular length (i.e. contraction) was observed in the axial direction. Also for this structural feature, a strong dependency on the specific amino acid sequence was found. Interestingly, the observed contraction is the opposite of what has been reported for natural collagen. As (Pro-Pro-Gly)n, (Pro-Hyp-Gly)n and (Hyp-Hyp-Gly)n repeat units are found in collagen with a relatively high abundance, this suggests that other collagen sequence fragments need to respond to hydration in the opposite way to obtain a net elongation of the full-length collagen molecule. To test this hypothesis, sequences predicted to be sensitive to osmotic pressure were considered. One such sequence, consisting of two repeat units (Ala-Arg-Gly-Ser-Asp-Gly), was inserted as a guest into a (Pro-Pro-Gly) host. When compared to the canonical CMP sequences investigated earlier, the lateral helix packing follows a similar trend with increasing hydration; however, the host-guest CMP axially elongates with increasing water content. This behavior is more similar to what has been found for natural collagen and suggests that different sequences do determine the molecular length of collagen sequences differently. Interestingly, the canonical sequences are more abundant in the overlap region while the guest sequence is found in the gap region. This allows to speculate that sequences in the gap and overlap regions possess a specifically fine-tuned local response to osmotic pressure changes. Clearly, more experiments with additional sequences are needed to confirm this. In conclusion, the results obtained in this work indicate a highly sequence specific interaction between collagen and water. Osmotic pressure-induced conformational changes mostly originate from local geometries and bonding patterns and affect both the structure of individual triple helices as well as higher order assemblies. One key remaining question is how these conformational changes affect the local mechanical properties of the collagen molecule. As a first step, the stiffness (persistence length) of full-length collagen was determined using atomic force microscopy. In the future, experimental strategies need to be developed that allow for investigating the mechanical properties of specific collagen sequences, e.g. performing single-molecule force spectroscopy of CMPs.}, language = {en} } @phdthesis{Friese2016, author = {Friese, Viviane A.}, title = {Solvato-, vapo, mechanochromic and luminescent behavior of Rhodium, Platinum and Gold complexes and their coordination polymers}, school = {Universit{\"a}t Potsdam}, pages = {100 S.}, year = {2016}, language = {en} } @phdthesis{Galushchinskiy2023, author = {Galushchinskiy, Alexey}, title = {Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis}, doi = {10.25932/publishup-61092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610923}, school = {Universit{\"a}t Potsdam}, pages = {351}, year = {2023}, abstract = {Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered.}, language = {en} } @phdthesis{Schneider2023, author = {Schneider, Helen}, title = {Reactive eutectic media based on ammonium formate for the valorization of bio-sourced materials}, doi = {10.25932/publishup-61302}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613024}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2023}, abstract = {In the last several decades eutectic mixtures of different compositions were successfully used as solvents for vast amount of chemical processes, and only relatively recently they were discovered to be widely spread in nature. As such they are discussed as a third liquid media of the living cell, that is composed of common cell metabolites. Such media may also incorporate water as a eutectic component in order to regulate properties such as enzyme activity or viscosity. Taking inspiration form such sophisticated use of eutectic mixtures, this thesis will explore the use of reactive eutectic media (REM) for organic synthesis. Such unconventional media are characterized by the reactivity of their components, which means that mixture may assume the role of the solvent as well as the reactant itself. The thesis focuses on novel REM based on ammonium formate and investigates their potential for the valorization of bio-sourced materials. The use of REM allows the performance of a number of solvent-free reactions, which entails the benefits of a superior atom and energy economy, higher yields and faster rates compared to reactions in solution. This is evident for the Maillard reaction between ammonium formate and various monosaccharides for the synthesis of substituted pyrazines as well as for a Leuckart type reaction between ammonium formate and levulinic acid for the synthesis of 5-methyl-2-pyrrolidone. Furthermore, reaction of ammonium formate with citric acid for the synthesis of yet undiscovered fluorophores, shows that synthesis in REM can open up unexpected reaction pathways. Another focus of the thesis is the study of water as a third component in the REM. As a result, the concept of two different dilution regimes (tertiary REM and in REM in solvent) appears useful for understanding the influence of water. It is shown that small amounts of water can be of great benefit for the reaction, by reducing viscosity and at the same time increasing reaction yields. REM based on ammonium formate and organic acids are employed for lignocellulosic biomass treatment. The thesis thereby introduces an alternative approach towards lignocellulosic biomass fractionation that promises a considerable process intensification by the simultaneous generation of cellulose and lignin as well as the production of value-added chemicals from REM components. The thesis investigates the generated cellulose and the pathway to nanocellulose generation and also includes the structural analysis of extracted lignin. Finally, the thesis investigates the potential of microwave heating to run chemical reactions in REM and describes the synergy between these two approaches. Microwave heating for chemical reactions and the use of eutectic mixtures as alternative reaction media are two research fields that are often described in the scope of green chemistry. The thesis will therefore also contain a closer inspection of this terminology and its greater goal of sustainability.}, language = {en} } @phdthesis{CruzLemus2020, author = {Cruz Lemus, Saul Daniel}, title = {Enhancing Efficiency of Inverted Perovskite Solar Cells}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2020}, abstract = {Carbon nitride and poly(ionic liquid)s (PILs) have been successfully applied in various fields of materials science owing to their outstanding properties. This thesis aims at the successful application of these polymers as innovative materials in the interfaces of hybrid organic-inorganic perovskite solar cells. A critical problem in harnessing the full thermodynamic potential of halide perovskites in solar cells is the design and modification of interfaces to reduce carrier recombination. Therefore, the interface must be properly studied and improved. This work investigated the effect of applying carbon nitride and PILs on a perovskite surface on the device performance. The facile synthetic method for modifying carbon nitride with vinyl thiazole and barbituric acid (CMB-vTA) yields 2.3 nm layers when solution processing is performed using isopropanol. The nanosheets were applied as a metal-free electron transport layer in inverted perovskite solar cells. The application of carbon nitride layers (CMB-vTA) resulted in negligible current-voltage hysteresis with a high open circuit voltage (Voc) of 1.1 V and a short-circuit current (Jsc) of 20.28 mA cm-2, which afforded efficiencies of up to 17\%. Thus, the successful implementation of a carbon nitride-based structure enabled good charge extraction with minimized interface recombination between the perovskite and PCBM. Similarly, PILs represent a new strategy of interfacial modification using an ionic polymer in an n-i-p perovskite architecture.. The application of PILs as an interfacial modifier resulted in solar cell devices with an extraordinarily high efficiency of 21.8\% and a Voc of 1.17 V. The implementation reduced non-radiative recombination at the perovskite surface through defect passivation. Finally, our work proposes a novel method to efficiently suppress non-radiative charge recombination using the unexplored properties of carbon nitride and PILs in the solar cell field. Additionally, the method for interfacial modification has general applicability because of the simplicity of the post-treatment approach, and therefore has potential applicability in other solar cells. Thus, this work opens the door to a new class of materials to be implemented.}, language = {en} } @misc{ReichLoehmannsroebenSchael2003, author = {Reich, Oliver and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Schael, Frank}, title = {Optical sensing with photon density waves: investigation of model media}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13147}, year = {2003}, abstract = {Investigations with frequency domain photon density waves allow elucidation of absorption and scattering properties of turbid media. The temporal and spatial propagation of intensity modulated light with frequencies up to more than 1 GHz can be described by the P1 approximation to the Boltzmann transport equation. In this study, we establish requirements for the appropriate choice of turbid model media and characterize mixtures of isosulfan blue as absorber and polystyrene beads as scatterer. For these model media, the independent determination of absorption and reduced scattering coefficients over large absorber and scatterer concentration ranges is demonstrated with a frequency domain photon density wave spectrometer employing intensity and phase measurements at various modulation frequencies.}, language = {en} }