@techreport{ŠedovaČizmaziovaCook2021, type = {Working Paper}, author = {Šedov{\´a}, Barbora and Čizmaziov{\´a}, Lucia and Cook, Athene}, title = {A meta-analysis of climate migration literature}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {29}, issn = {2628-653X}, doi = {10.25932/publishup-49982}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499827}, pages = {83}, year = {2021}, abstract = {The large literature that aims to find evidence of climate migration delivers mixed findings. This meta-regression analysis i) summarizes direct links between adverse climatic events and migration, ii) maps patterns of climate migration, and iii) explains the variation in outcomes. Using a set of limited dependent variable models, we meta-analyze thus-far the most comprehensive sample of 3,625 estimates from 116 original studies and produce novel insights on climate migration. We find that extremely high temperatures and drying conditions increase migration. We do not find a significant effect of sudden-onset events. Climate migration is most likely to emerge due to contemporaneous events, to originate in rural areas and to take place in middle-income countries, internally, to cities. The likelihood to become trapped in affected areas is higher for women and in low-income countries, particularly in Africa. We uniquely quantify how pitfalls typical for the broader empirical climate impact literature affect climate migration findings. We also find evidence of different publication biases.}, language = {en} } @article{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic inactivation of E. coli bacteria via carbon nanodots}, series = {ACS omega / American Chemical Society}, volume = {6}, journal = {ACS omega / American Chemical Society}, number = {37}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c01700}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @article{ZurellKoenigMalchowetal.2022, author = {Zurell, Damaris and K{\"o}nig, Christian and Malchow, Anne-Kathleen and Kapitza, Simon and Bocedi, Greta and Travis, Justin M. J. and Fandos, Guillermo}, title = {Spatially explicit models for decision-making in animal conservation and restoration}, series = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, journal = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1600-0587}, doi = {10.1111/ecog.05787}, pages = {1 -- 16}, year = {2022}, abstract = {Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79\%), towards the species and population level (80\%) and towards conservation (rather than restoration) applications (71\%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10\% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes.}, language = {en} } @article{ZieglerPfitznerSchulzetal.2022, author = {Ziegler, Joceline and Pfitzner, Bjarne and Schulz, Heinrich and Saalbach, Axel and Arnrich, Bert}, title = {Defending against Reconstruction Attacks through Differentially Private Federated Learning for Classification of Heterogeneous Chest X-ray Data}, series = {Sensors}, volume = {22}, journal = {Sensors}, edition = {14}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1424-8220}, doi = {10.3390/s22145195}, pages = {25}, year = {2022}, abstract = {Privacy regulations and the physical distribution of heterogeneous data are often primary concerns for the development of deep learning models in a medical context. This paper evaluates the feasibility of differentially private federated learning for chest X-ray classification as a defense against data privacy attacks. To the best of our knowledge, we are the first to directly compare the impact of differentially private training on two different neural network architectures, DenseNet121 and ResNet50. Extending the federated learning environments previously analyzed in terms of privacy, we simulated a heterogeneous and imbalanced federated setting by distributing images from the public CheXpert and Mendeley chest X-ray datasets unevenly among 36 clients. Both non-private baseline models achieved an area under the receiver operating characteristic curve (AUC) of 0.940.94 on the binary classification task of detecting the presence of a medical finding. We demonstrate that both model architectures are vulnerable to privacy violation by applying image reconstruction attacks to local model updates from individual clients. The attack was particularly successful during later training stages. To mitigate the risk of a privacy breach, we integrated R{\´e}nyi differential privacy with a Gaussian noise mechanism into local model training. We evaluate model performance and attack vulnerability for privacy budgets ε∈{1,3,6,10}�∈{1,3,6,10}. The DenseNet121 achieved the best utility-privacy trade-off with an AUC of 0.940.94 for ε=6�=6. Model performance deteriorated slightly for individual clients compared to the non-private baseline. The ResNet50 only reached an AUC of 0.760.76 in the same privacy setting. Its performance was inferior to that of the DenseNet121 for all considered privacy constraints, suggesting that the DenseNet121 architecture is more robust to differentially private training.}, language = {en} } @phdthesis{Ziege2022, author = {Ziege, Ricardo}, title = {Growth dynamics and mechanical properties of E. coli biofilms}, doi = {10.25932/publishup-55986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559869}, school = {Universit{\"a}t Potsdam}, pages = {xi, 123}, year = {2022}, abstract = {Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields.}, language = {en} } @phdthesis{Zhou2022, author = {Zhou, Shuo}, title = {Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young's modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young's modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young's modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity.}, language = {en} } @phdthesis{Zhang2019, author = {Zhang, Shuhao}, title = {Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 161}, year = {2019}, abstract = {This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary.}, language = {en} } @phdthesis{Zeuschner2022, author = {Zeuschner, Steffen Peer}, title = {Magnetoacoustics observed with ultrafast x-ray diffraction}, doi = {10.25932/publishup-56109}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561098}, school = {Universit{\"a}t Potsdam}, pages = {V, 128, IX}, year = {2022}, abstract = {In the present thesis I investigate the lattice dynamics of thin film hetero structures of magnetically ordered materials upon femtosecond laser excitation as a probing and manipulation scheme for the spin system. The quantitative assessment of laser induced thermal dynamics as well as generated picosecond acoustic pulses and their respective impact on the magnetization dynamics of thin films is a challenging endeavor. All the more, the development and implementation of effective experimental tools and comprehensive models are paramount to propel future academic and technological progress. In all experiments in the scope of this cumulative dissertation, I examine the crystal lattice of nanoscale thin films upon the excitation with femtosecond laser pulses. The relative change of the lattice constant due to thermal expansion or picosecond strain pulses is directly monitored by an ultrafast X-ray diffraction (UXRD) setup with a femtosecond laser-driven plasma X-ray source (PXS). Phonons and spins alike exert stress on the lattice, which responds according to the elastic properties of the material, rendering the lattice a versatile sensor for all sorts of ultrafast interactions. On the one hand, I investigate materials with strong magneto-elastic properties; The highly magnetostrictive rare-earth compound TbFe2, elemental Dysprosium or the technological relevant Invar material FePt. On the other hand I conduct a comprehensive study on the lattice dynamics of Bi1Y2Fe5O12 (Bi:YIG), which exhibits high-frequency coherent spin dynamics upon femtosecond laser excitation according to the literature. Higher order standing spinwaves (SSWs) are triggered by coherent and incoherent motion of atoms, in other words phonons, which I quantified with UXRD. We are able to unite the experimental observations of the lattice and magnetization dynamics qualitatively and quantitatively. This is done with a combination of multi-temperature, elastic, magneto-elastic, anisotropy and micro-magnetic modeling. The collective data from UXRD, to probe the lattice, and time-resolved magneto-optical Kerr effect (tr-MOKE) measurements, to monitor the magnetization, were previously collected at different experimental setups. To improve the precision of the quantitative assessment of lattice and magnetization dynamics alike, our group implemented a combination of UXRD and tr-MOKE in a singular experimental setup, which is to my knowledge, the first of its kind. I helped with the conception and commissioning of this novel experimental station, which allows the simultaneous observation of lattice and magnetization dynamics on an ultrafast timescale under identical excitation conditions. Furthermore, I developed a new X-ray diffraction measurement routine which significantly reduces the measurement time of UXRD experiments by up to an order of magnitude. It is called reciprocal space slicing (RSS) and utilizes an area detector to monitor the angular motion of X-ray diffraction peaks, which is associated with lattice constant changes, without a time-consuming scan of the diffraction angles with the goniometer. RSS is particularly useful for ultrafast diffraction experiments, since measurement time at large scale facilities like synchrotrons and free electron lasers is a scarce and expensive resource. However, RSS is not limited to ultrafast experiments and can even be extended to other diffraction techniques with neutrons or electrons.}, language = {en} } @phdthesis{Yishai2019, author = {Yishai, Oren}, title = {Engineering the reductive glycine pathway in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {86}, year = {2019}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoai, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @misc{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1317}, issn = {1866-8372}, doi = {10.25932/publishup-58770}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587705}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{YangKimTuomainenetal.2022, author = {Yang, Jingdan and Kim, Jae-Hyun and Tuomainen, Outi and Rattanasone, Nan Xu}, title = {Bilingual Mandarin-English preschoolers' spoken narrative skills and contributing factors}, series = {Frontiers in Psyhology}, volume = {13}, journal = {Frontiers in Psyhology}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.797602}, pages = {12}, year = {2022}, abstract = {This study examined the spoken narrative skills of a group of bilingual Mandarin-English speaking 3-6-year-olds (N = 25) in Australia, using a remote online story-retell task. Bilingual preschoolers are an understudied population, especially those who are speaking typologically distinct languages such as Mandarin and English which have fewer structural overlaps compared to language pairs that are typologically closer, reducing cross-linguistic positive transfer. We examined these preschoolers' spoken narrative skills as measured by macrostructures (the global organization of a story) and microstructures (linguistic structures, e.g., total number of utterances, nouns, verbs, phrases, and modifiers) across and within each language, and how various factors such as age and language experiences contribute to individual variability. The results indicate that our bilingual preschoolers acquired spoken narrative skills similarly across their two languages, i.e., showing similar patterns of productivity for macrostructure and microstructure elements in both of their two languages. While chronological age was positively correlated with macrostructures in both languages (showing developmental effects), there were no significant correlations between measures of language experiences and the measures of spoken narrative skills (no effects for language input/output). The findings suggest that although these preschoolers acquire two typologically diverse languages in different learning environments, Mandarin at home with highly educated parents, and English at preschool, they displayed similar levels of oral narrative skills as far as these macro-/micro-structure measures are concerned. This study provides further evidence for the feasibility of remote online assessment of preschoolers' narrative skills.}, language = {en} } @article{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk}, series = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, number = {3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac5282}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @article{WutzlerHudsonThieken2022, author = {Wutzler, Bianca and Hudson, Paul and Thieken, Annegret}, title = {Adaptation strategies of flood-damaged businesses in Germany}, series = {Frontiers in Water}, journal = {Frontiers in Water}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {2624-9375}, doi = {10.3389/frwa.2022.932061}, pages = {13}, year = {2022}, abstract = {Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication.}, language = {en} } @article{WrightWachsHuang2020, author = {Wright, Michelle F. and Wachs, Sebastian and Huang, Zheng}, title = {Adolescents' Popularity-Motivated Aggression and Prosocial Behaviors: The Roles of Callous-Unemotional Traits and Social Status Insecurity}, series = {Frontiers in Psychology}, journal = {Frontiers in Psychology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.606865}, pages = {1 -- 8}, year = {2020}, abstract = {As competition over peer status becomes intense during adolescence, some adolescents develop insecure feelings regarding their social standing among their peers (i.e., social status insecurity). These adolescents sometimes use aggression to defend or promote their status. The aim of this study was to examine the relationships among social status insecurity, callous-unemotional (CU) traits, and popularity-motivated aggression and prosocial behaviors among adolescents, while controlling for gender. Another purpose was to examine the potential moderating role of CU traits in these relationships. Participants were 1,047 (49.2\% girls; Mage = 12.44 years; age range from 11 to 14 years) in the 7th or 8th grades from a large Midwestern city. They completed questionnaires on social status insecurity, CU traits, and popularity-motivated relational aggression, physical aggression, cyberaggression, and prosocial behaviors. A structural regression model was conducted, with gender as a covariate. The model had adequate fit. Social status insecurity was associated positively with callousness, unemotional, and popularity-motivated aggression and related negatively to popularity-motivated prosocial behaviors. High social status insecurity was related to greater popularity-motivated aggression when adolescents had high callousness traits. The findings have implications for understanding the individual characteristics associated with social status insecurity.}, language = {en} } @article{WochatzSchraplauEngeletal.2022, author = {Wochatz, Monique and Schraplau, Anne and Engel, Tilman and Zecher, Mahli Megan and Sharon, Hadar and Alt, Yasmin and Mayer, Frank and Kalron, Alon}, title = {Application of eccentric training in various clinical populations}, series = {PLoS ONE}, volume = {17}, journal = {PLoS ONE}, number = {12}, publisher = {Public Library of Science}, address = {San Francisco, California, USA}, issn = {1932-6203}, doi = {10.1371/journal.pone.0270875}, pages = {15}, year = {2022}, abstract = {Physical activity and exercise are effective approaches in prevention and therapy of multiple diseases. Although the specific characteristics of lengthening contractions have the potential to be beneficial in many clinical conditions, eccentric training is not commonly used in clinical populations with metabolic, orthopaedic, or neurologic conditions. The purpose of this pilot study is to investigate the feasibility, functional benefits, and systemic responses of an eccentric exercise program focused on the trunk and lower extremities in people with low back pain (LBP) and multiple sclerosis (MS). A six-week eccentric training program with three weekly sessions is performed by people with LBP and MS. The program consists of ten exercises addressing strength of the trunk and lower extremities. The study follows a four-group design (N = 12 per group) in two study centers (Israel and Germany): three groups perform the eccentric training program: A) control group (healthy, asymptomatic); B) people with LBP; C) people with MS; group D (people with MS) receives standard care physiotherapy. Baseline measurements are conducted before first training, post-measurement takes place after the last session both comprise blood sampling, self-reported questionnaires, mobility, balance, and strength testing. The feasibility of the eccentric training program will be evaluated using quantitative and qualitative measures related to the study process, compliance and adherence, safety, and overall program assessment. For preliminary assessment of potential intervention effects, surrogate parameters related to mobility, postural control, muscle strength and systemic effects are assessed. The presented study will add knowledge regarding safety, feasibility, and initial effects of eccentric training in people with orthopaedic and neurological conditions. The simple exercises, that are easily modifiable in complexity and intensity, are likely beneficial to other populations. Thus, multiple applications and implementation pathways for the herein presented training program are conceivable.}, language = {en} } @phdthesis{Witt2018, author = {Witt, Tanja Ivonne}, title = {Camera Monitoring at volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421073}, school = {Universit{\"a}t Potsdam}, pages = {viii, 140}, year = {2018}, abstract = {Basaltic fissure eruptions, such as on Hawai'i or on Iceland, are thought to be driven by the lateral propagation of feeder dikes and graben subsidence. Associated solid earth processes, such as deformation and structural development, are well studied by means of geophysical and geodetic technologies. The eruptions themselves, lava fountaining and venting dynamics, in turn, have been much less investigated due to hazardous access, local dimension, fast processes, and resulting poor data availability. This thesis provides a detailed quantitative understanding of the shape and dynamics of lava fountains and the morphological changes at their respective eruption sites. For this purpose, I apply image processing techniques, including drones and fixed installed cameras, to the sequence of frames of video records from two well-known fissure eruptions in Hawai'i and Iceland. This way I extract the dimensions of multiple lava fountains, visible in all frames. By putting these results together and considering the acquisition times of the frames I quantify the variations in height, width and eruption velocity of the lava fountains. Then I analyse these time-series in both time and frequency domains and investigate the similarities and correlations between adjacent lava fountains. Following this procedure, I am able to link the dynamics of the individual lava fountains to physical parameters of the magma transport in the feeder dyke of the fountains. The first case study in this thesis focuses on the March 2011 Pu'u'O'o eruption, Hawai'i, where a continuous pulsating behaviour at all eight lava fountains has been observed. The lava fountains, even those from different parts of the fissure that are closely connected, show a similar frequency content and eruption behaviour. The regular pattern in the heights of lava fountain suggests a controlling process within the magma feeder system like a hydraulic connection in the underlying dyke, affecting or even controlling the pulsating behaviour. The second case study addresses the 2014-2015 Holuhraun fissure eruption, Iceland. In this case, the feeder dyke is highlighted by the surface expressions of graben-like structures and fault systems. At the eruption site, the activity decreases from a continuous line of fire of ~60 vents to a limited number of lava fountains. This can be explained by preferred upwards magma movements through vertical structures of the pre-eruptive morphology. Seismic tremors during the eruption reveal vent opening at the surface and/or pressure changes in the feeder dyke. The evolving topography of the cinder cones during the eruption interacts with the lava fountain behaviour. Local variations in the lava fountain height and width are controlled by the conduit diameter, the depth of the lava pond and the shape of the crater. Modelling of the fountain heights shows that long-term eruption behaviour is controlled mainly by pressure changes in the feeder dyke. This research consists of six chapters with four papers, including two first author and two co-author papers. It establishes a new method to analyse lava fountain dynamics by video monitoring. The comparison with the seismicity, geomorphologic and structural expressions of fissure eruptions shows a complex relationship between focussed flow through dykes, the morphology of the cinder cones, and the lava fountain dynamics at the vents of a fissure eruption.}, language = {en} } @unpublished{WittKurthsKrauseetal.1994, author = {Witt, Annette and Kurths, J{\"u}rgen and Krause, F. and Fischer, K.}, title = {On the validity of a model for the reversals of the Earth's magnetic field}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13460}, year = {1994}, abstract = {We have used techniques of nonlinear dynamics to compare a special model for the reversals of the Earth's magnetic field with the observational data. Although this model is rather simple, there is no essential difference to the data by means of well-known characteristics, such as correlation function and probability distribution. Applying methods of symbolic dynamics we have found that the considered model is not able to describe the dynamical properties of the observed process. These significant differences are expressed by algorithmic complexity and Renyi information.}, language = {en} } @book{WistSchaeferVogleretal.2010, author = {Wist, Dominic and Schaefer, Mark and Vogler, Walter and Wollowski, Ralf}, title = {STG decomposition : internal communication for SI implementability}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-037-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40786}, publisher = {Universit{\"a}t Potsdam}, pages = {36}, year = {2010}, abstract = {STG decomposition is a promising approach to tackle the complexity problems arising in logic synthesis of speed independent circuits, a robust asynchronous (i.e. clockless) circuit type. Unfortunately, STG decomposition can result in components that in isolation have irreducible CSC conflicts. Generalising earlier work, it is shown how to resolve such conflicts by introducing internal communication between the components via structural techniques only.}, language = {en} } @phdthesis{Wischnewski2011, author = {Wischnewski, Juliane}, title = {Reconstructing climate variability on the Tibetan Plateau : comparing aquatic and terrestrial signals}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52453}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Spatial and temporal temperature and moisture patterns across the Tibetan Plateau are very complex. The onset and magnitude of the Holocene climate optimum in the Asian monsoon realm, in particular, is a subject of considerable debate as this time period is often used as an analogue for recent global warming. In the light of contradictory inferences regarding past climate and environmental change on the Tibetan Plateau, I have attempted to explain mismatches in the timing and magnitude of change. Therefore, I analysed the temporal variation of fossil pollen and diatom spectra and the geochemical record from palaeo-ecological records covering different time scales (late Quaternary and the last 200 years) from two core regions in the NE and SE Tibetan Plateau. For interpretation purposes I combined my data with other available palaeo-ecological data to set up corresponding aquatic and terrestrial proxy data sets of two lake pairs and two sets of sites. I focused on the direct comparison of proxies representing lacustrine response to climate signals (e.g., diatoms, ostracods, geochemical record) and proxies representing changes in the terrestrial environment (i.e., terrestrial pollen), in order to asses whether the lake and its catchments respond at similar times and magnitudes to environmental changes. Therefore, I introduced the established numerical technique procrustes rotation as a new approach in palaeoecology to quantitatively compare raw data of any two sedimentary records of interest in order to assess their degree of concordance. Focusing on the late Quaternary, sediment cores from two lakes (Kuhai Lake 35.3°N; 99.2°E; 4150 m asl; and Koucha Lake 34.0°N; 97.2°E; 4540 m asl) on the semi-arid northeastern Tibetan Plateau were analysed to identify post-glacial vegetation and environmental changes, and to investigate the responses of lake ecosystems to such changes. Based on the pollen record, five major vegetation and climate changes could be identified: (1) A shift from alpine desert to alpine steppe indicates a change from cold, dry conditions to warmer and more moist conditions at 14.8 cal. ka BP, (2) alpine steppe with tundra elements points to conditions of higher effective moisture and a stepwise warming climate at 13.6 cal. ka BP, (3) the appearance of high-alpine meadow vegetation indicates a further change towards increased moisture, but with colder temperatures, at 7.0 cal. ka BP, (4) the reoccurrence of alpine steppe with desert elements suggests a return to a significantly colder and drier phase at 6.3 cal. ka BP, and (5) the establishment of alpine steppe-meadow vegetation indicates a change back to relatively moist conditions at 2.2 cal. ka BP. To place the reconstructed climate inferences from the NE Tibetan Plateau into the context of Holocene moisture evolution across the Tibetan Plateau, I applied a five-scale moisture index and average link clustering to all available continuous pollen and non-pollen palaeoclimate records from the Tibetan Plateau, in an attempt to detect coherent regional and temporal patterns of moisture evolution on the Plateau. However, no common temporal or spatial pattern of moisture evolution during the Holocene could be detected, which can be assigned to the complex responses of different proxies to environmental changes in an already very heterogeneous mountain landscape, where minor differences in elevation can result in marked variations in microenvironments. Focusing on the past 200 years, I analysed the sedimentary records (LC6 Lake 29.5°N, 94.3°E, 4132 m asl; and Wuxu Lake 29.9°N, 101.1°E, 3705 m asl) from the southeastern Tibetan Plateau. I found that despite presumed significant temperature increases over that period, pollen and diatom records from the SE Tibetan Plateau reveal only very subtle changes throughout their profiles. The compositional species turnover investigated over the last 200 years appears relatively low in comparison to the species reorganisations during the Holocene. The results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem. Forest clearances and reforestation have not caused forest decline in our study area, but a conversion of natural forests to semi-natural secondary forests. The results from the numerical proxy comparison of the two sets of two pairs of Tibetan lakes indicate that the use of different proxies and the work with palaeo-ecological records from different lake types can cause deviant stories of inferred change. Irrespective of the timescale (Holocene or last 200 years) or region (SE or NE Tibetan Plateau) analysed, the agreement in terms of the direction, timing, and magnitude of change between the corresponding terrestrial data sets is generally better than the match between the corresponding lacustrine data sets, suggesting that lacustrine proxies may partly be influenced by in-lake or local catchment processes whereas the terrestrial proxy reflects a more regional climatic signal. The current disaccord on coherent temporal and spatial climate patterns on the Tibetan Plateau can partly be ascribed to the complexity of proxy response and lake systems on the Tibetan Plateau. Therefore, a multi-proxy, multi-site approach is important in order to gain a reliable climate interpretation for the complex mountain landscape of the Tibetan Plateau.}, language = {en} }