@article{CorbettSiegelThulin2024, author = {Corbett, Tim and Siegel, Bj{\"o}rn and Thulin, Mirjam}, title = {Towards Pluricultural and Connected Histories}, series = {PaRDeS}, journal = {PaRDeS}, number = {29}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-574-3}, issn = {1614-6492}, doi = {10.25932/publishup-64598}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-645988}, pages = {15 -- 27}, year = {2024}, language = {en} } @article{Hoedl2024, author = {H{\"o}dl, Klaus}, title = {Blurring the Boundaries of Jewishness}, series = {PaRDeS}, journal = {PaRDeS}, number = {29}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-574-3}, issn = {1614-6492}, doi = {10.25932/publishup-64600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-646009}, pages = {39 -- 50}, year = {2024}, abstract = {In this essay I argue that while research in Jewish studies over the last several decades has done much to erode the historical narrative of Jewish/non-Jewish separation and detachment, it has also raised various questions pertaining to the outcome of Jewish/non-Jewish interactions and coexistence as well as the contours of Jewish difference. I contend that employing the concepts of conviviality, ethnic/religious/national indifference, and similarity will greatly facilitate answering these questions.}, language = {en} } @article{Csaky2024, author = {Cs{\´a}ky, Moritz}, title = {Habsburg Central Europe}, series = {PaRDeS}, journal = {PaRDeS}, number = {29}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-574-3}, issn = {1614-6492}, doi = {10.25932/publishup-64599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-645995}, pages = {31 -- 37}, year = {2024}, abstract = {Central Europe is characterized by linguistic and cultural density as well as by endogenous and exogenous cultural influences. These constellations were especially visible in the former Habsburg Empire, where they influenced the formation of individual and collective identities. This led not only to continual crises and conflicts, but also to an equally enormous creative potential as became apparent in the culture of the fin-de-si{\`e}cle.}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoai, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} }