@misc{ElsenbeerCasselCastro1992, author = {Elsenbeer, Helmut and Cassel, Keith and Castro, Jorge}, title = {Spatial analysis of soil hydraulic conductivity in a tropical rain forest catchment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16979}, year = {1992}, abstract = {The topography of first-order catchments in a region of western Amazonia was found to exhibit distinctive, recurrent features: a steep, straight lower side slope, a flat or nearly flat terrace at an intermediate elevation between valley floor and interfluve, and an upper side slope connecting interfluve and intermediate terrace. A detailed survey of soil-saturated hydraulic conductivity (K sat)-depth relationships, involving 740 undisturbed soil cores, was conducted in a 0.75-ha first-order catchment. The sampling approach was stratified with respect to the above slope units. Exploratory data analysis suggested fourth-root transformation of batches from the 0-0.1 m depth interval, log transformation of batches from the subsequent 0.1 m depth increments, and the use of robust estimators of location and scale. The K sat of the steep lower side slope decreased from 46 to 0.1 mm/h over the overall sampling depth of 0.4 m. The corresponding decrease was from 46 to 0.1 mm/h on the intermediate terrace, from 335 to 0.01 mm/h on the upper side slope, and from 550 to 0.015 mm/h on the interfluve. A depthwise comparison of these slope units led to the formulation of several hypotheses concerning the link between K sat and topography.}, language = {en} } @misc{ElsenbeerCasselTinner1993, author = {Elsenbeer, Helmut and Cassel, Keith and Tinner, W.}, title = {A daily rainfall erosivity model for Western Amazonia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16962}, year = {1993}, abstract = {Rainfall erosivities as defined by the R factor from the universal soil loss equation were determined for all events during a two-year period at the station La Cuenca in western Amazonia. Three methods based on a power relationship between rainfall amount and erosivity were then applied to estimate event and daily rainfall erosivities from the respective rainfall amounts. A test of the resulting regression equations against an independent data set proved all three methods equally adequate in predicting rainfall erosivity from daily rainfall amount. We recommend the Richardson model for testing in the Amazon Basin, and its use with the coefficient from La Cuenca in western Amazonia.}, language = {en} } @misc{HowaldElsenbeerLaczkoetal.1995, author = {Howald, Markus and Elsenbeer, Helmut and Laczko, Endre and Schlunegger, Urs Peter}, title = {Capillary electrophoresis as a fast and universal tool in soil analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16913}, year = {1995}, abstract = {Fast analysis of different species of molecules in soils is investigated by capillary electrophoresis (CE). Several CE techniques for the analysis of inorganic ions and carbohydrates have been tested. With regard to the intents of pedologists and the usually large number of soil analyses a bundle of CE systems is proposed, capable of effecting time-saving soil analyses. Adapted electrolyte systems recently published and new separation systems are described. Examples of the application of these methods to two different soil samples are presented.}, language = {en} } @misc{ElsenbeerLackCassel1995, author = {Elsenbeer, Helmut and Lack, Andreas and Cassel, Keith}, title = {Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16937}, year = {1995}, abstract = {A forested first-order catchment in western Amazonia was monitored for 2 years to determine the chemical fingerprints of precipitation, throughfall, overland flow, pipe flow, soil water, groundwater, and streamflow. We used five tracers (hydrogen, calcium, magnesium, potassium, and silica) to distinguish "fast" flow paths mainly influenced by the biological subsystem from "slow" flow paths in the geochemical subsystem. The former comprise throughfall, overland flow, and pipe flow and are characterized by a high potassium/silica ratio; the latter are represented by soil water and groundwater, which have a low potassium/silica ratio. Soil water and groundwater differ with respect to calcium and magnesium. The groundwater-controlled streamflow chemistry is strongly modified by contributions from fast flow paths during precipitation events. The high potassium/silica ratio of these flow paths suggests that the storm flow response at La Cuenca is dominated by event water.}, language = {en} } @misc{ElsenbeerLorieriBonell1995, author = {Elsenbeer, Helmut and Lorieri, Daniel and Bonell, Mike}, title = {Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16948}, year = {1995}, abstract = {Previous hydrometric studies demonstrated the prevalence of overland flow as a hydrological pathway in the tropical rain forest catchment of South Creek, northeast Queensland. The purpose of this study was to consider this information in a mixing analysis with the aim of identifying sources of, and of estimating their contribution to, storm flow during two events in February 1993. K and acid-neutralizing capacity (ANC) were used as tracers because they provided the best separation of the potential sources, saturation overland flow, soil water from depths of 0.3, 0.6, and 1.2 m, and hillslope groundwater in a two-dimensional mixing plot. It was necessary to distinguish between saturation overland flow, generated at the soil surface and following unchanneled pathways, and overland flow in incised pathways. This latter type of overland flow was a mixture of saturation overland flow (event water) with high concentrations of K and a low ANC, soil water (preevent water) with low concentrations of K and a low ANC, and groundwater (preevent water) with low concentrations of K and a high ANC. The same sources explained the streamwater chemistry during the two events with strongly differing rainfall and antecedent moisture conditions. The contribution of saturation overland flow dominated the storm flow during the first, high-intensity, 178-mm event, while the contribution of soil water reached 50\% during peak flow of the second, low-intensity, 44-mm event 5 days later. This latter result is remarkably similar to soil water contributions to storm flow in mountainous forested catchments of the southeastern United States. In terms of event and preevent water the storm flow hydrograph of the high-intensity event is dominated by event water and that of the low-intensity event by preevent water. This study highlights the problems of applying mixing analyses to overland flow-dominated catchments and soil environments with a poorly developed vertical chemical zonation and emphasizes the need for independent hydrometric information for a complete characterization of watershed hydrology and chemistry.}, language = {en} } @article{BaierSoyez2000, author = {Baier, Dieter and Soyez, Konrad}, title = {Stoffstrommanagement an Konversionsstandorten}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {9}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3545}, pages = {51 -- 59}, year = {2000}, language = {de} } @article{Goetze2003, author = {G{\"o}tze, Bettina}, title = {Die untere Havelniederung - eine gewachsene Kulturlandschaft?}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {13}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-4001}, pages = {5 -- 15}, year = {2003}, language = {de} } @article{Buchta2003, author = {Buchta, Rocco}, title = {Der Aufbau neuer Naturparke in Brandenburg am Beispiel des Naturparkes Westhavelland}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {13}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-4092}, pages = {121 -- 137}, year = {2003}, language = {de} } @misc{ZeheBloeschl2004, author = {Zehe, Erwin and Bl{\"o}schl, G{\"u}nter}, title = {Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60119}, year = {2004}, abstract = {This paper examines the effect of uncertain initial soil moisture on hydrologic response at the plot scale (1 m2) and the catchment scale (3.6 km2) in the presence of threshold transitions between matrix and preferential flow. We adopt the concepts of microstates and macrostates from statistical mechanics. The microstates are the detailed patterns of initial soil moisture that are inherently unknown, while the macrostates are specified by the statistical distributions of initial soil moisture that can be derived from the measurements typically available in field experiments. We use a physically based model and ensure that it closely represents the processes in the Weiherbach catchment, Germany. We then use the model to generate hydrologic response to hypothetical irrigation events and rainfall events for multiple realizations of initial soil moisture microstates that are all consistent with the same macrostate. As the measures of uncertainty at the plot scale we use the coefficient of variation and the scaled range of simulated vertical bromide transport distances between realizations. At the catchment scale we use similar statistics derived from simulated flood peak discharges. The simulations indicate that at both scales the predictability depends on the average initial soil moisture state and is at a minimum around the soil moisture value where the transition from matrix to macropore flow occurs. The predictability increases with rainfall intensity. The predictability increases with scale with maximum absolute errors of 90 and 32\% at the plot scale and the catchment scale, respectively. It is argued that even if we assume perfect knowledge on the processes, the level of detail with which one can measure the initial conditions along with the nonlinearity of the system will set limits to the repeatability of experiments and limits to the predictability of models at the plot and catchment scales.}, language = {de} } @misc{LindenmaierZeheDittfurthetal.2004, author = {Lindenmaier, Falk and Zehe, Erwin and Dittfurth, Angela and Ihringer, J{\"u}rgen}, title = {Process identification at a slow-moving landslide in the Vorarlberg Alps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60226}, year = {2004}, abstract = {A fine-grained slope that exhibits slow movement rates was investigated to understand how geohydrological processes contribute to a consecutive development of mass movements in the Vorarlberg Alps, Austria. For that purpose intensive hydrometeorological, hydrogeological and geotechnical observations as well as surveying of surface movement rates were conducted during 1998-2001. Subsurface water dynamics at the creeping slope turned out to be dominated by a three-dimensional pressure system. The pressure reaction is triggered by fast infiltration of surface water and subsequent lateral water flow in the south-western part of the hillslope. The related pressure signal was shown to propagate further downhill, causing fast reactions of the piezometric head at 5Ð5 m depth on a daily time scale. The observed pressure reactions might belong to a temporary hillslope water body that extends further downhill. The related buoyancy forces could be one of the driving forces for the mass movement. A physically based hydrological model was adopted to model simultaneously surface and subsurface water dynamics including evapotranspiration and runoff production. It was possible to reproduce surface runoff and observed pressure reactions in principle. However, as soil hydraulic functions were only estimated on pedotransfer functions, a quantitative comparison between observed and simulated subsurface dynamics is not feasible. Nevertheless, the results suggest that it is possible to reconstruct important spatial structures based on sparse observations in the field which allow reasonable simulations with a physically based hydrological model. Copyright  2005 John Wiley \& Sons, Ltd. KEY WORDS rainfall-induced landslides; soil creep; hydrological modelling; Vorarlberg; Austria; pressure propagation}, language = {en} } @inproceedings{MaerkerSchroederEsselbachCapolongoetal.2006, author = {M{\"a}rker, Michael and Schr{\"o}der-Esselbach, Boris and Capolongo, Domenico and Bentivenga, Mario}, title = {Geomorphological and pedological processes in badland areas of Southern Italy and their interaction with Mediterranean vegetation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7288}, year = {2006}, abstract = {Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {en} }