@phdthesis{Wenk2020, author = {Wenk, Sebastian}, title = {Engineering formatotrophic growth in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {V, 107}, year = {2020}, abstract = {To meet the demands of a growing world population while reducing carbon dioxide (CO2) emissions, it is necessary to capture CO2 and convert it into value-added compounds. In recent years, metabolic engineering of microbes has gained strong momentum as a strategy for the production of valuable chemicals. As common microbial feedstocks like glucose directly compete with human consumption, the one carbon (C1) compound formate was suggested as an alternative feedstock. Formate can be easily produced by various means including electrochemical reduction of CO2 and could serve as a feedstock for microbial production, hence presenting a novel entry point for CO2 to the biosphere and a storage option for excess electricity. Compared to the gaseous molecule CO2, formate is a highly soluble compound that can be easily handled and stored. It can serve as a carbon and energy source for natural formatotrophs, but these microbes are difficult to cultivate and engineer. In this work, I present the results of several projects that aim to establish efficient formatotrophic growth of E. coli - which cannot naturally grow on formate - via synthetic formate assimilation pathways. In the first study, I establish a workflow for growth-coupled metabolic engineering of E. coli. I demonstrate this approach by presenting an engineering scheme for the PFL-threonine cycle, a synthetic pathway for anaerobic formate assimilation in E. coli. The described methods are intended to create a standardized toolbox for engineers that aim to establish novel metabolic routes in E. coli and related organisms. The second chapter presents a study on the catalytic efficiency of C1-oxidizing enzymes in vivo. As formatotrophic growth requires generation of both energy and biomass from formate, the engineered E. coli strains need to be equipped with a highly efficient formate dehydrogenase, which provides reduction equivalents and ATP for formate assimilation. I engineered a strain that cannot generate reducing power and energy for cellular growth, when fed on acetate. Under this condition, the strain depends on the introduction of an enzymatic system for NADH regeneration, which could further produce ATP via oxidative phosphorylation. I show that the strain presents a valuable testing platform for C1-oxidizing enzymes by testing different NAD-dependent formate and methanol dehydrogenases in the energy auxotroph strain. Using this platform, several candidate enzymes with high in vivo activity, were identified and characterized as potential energy-generating systems for synthetic formatotrophic or methylotrophic growth in E. coli.   In the third chapter, I present the establishment of the serine threonine cycle (STC) - a synthetic formate assimilation pathway - in E. coli. In this pathway, formate is assimilated via formate tetrahydrofolate ligase (FtfL) from Methylobacterium extorquens (M. extorquens). The carbon from formate is attached to glycine to produce serine, which is converted into pyruvate entering central metabolism. Via the natural threonine synthesis and cleavage route, glycine is regenerated and acetyl-CoA is produced as the pathway product. I engineered several selection strains that depend on different STC modules for growth and determined key enzymes that enable high flux through threonine synthesis and cleavage. I could show that expression of an auxiliary formate dehydrogenase was required to achieve growth via threonine synthesis and cleavage on pyruvate. By overexpressing most of the pathway enzymes from the genome, and applying adaptive laboratory evolution, growth on glycine and formate was achieved, indicating the activity of the complete cycle. The fourth chapter shows the establishment of the reductive glycine pathway (rGP) - a short, linear formate assimilation route - in E. coli. As in the STC, formate is assimilated via M. extorquens FtfL. The C1 from formate is condensed with CO2 via the reverse reaction of the glycine cleavage system to produce glycine. Another carbon from formate is attached to glycine to form serine, which is assimilated into central metabolism via pyruvate. The engineered E. coli strain, expressing most of the pathway genes from the genome, can grow via the rGP with formate or methanol as a sole carbon and energy source.}, language = {en} }