@phdthesis{Neuharth2022, author = {Neuharth, Derek}, title = {Evolution of divergent and strike-slip boundaries in response to surface processes}, doi = {10.25932/publishup-54940}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549403}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 108}, year = {2022}, abstract = {Plate tectonics describes the movement of rigid plates at the surface of the Earth as well as their complex deformation at three types of plate boundaries: 1) divergent boundaries such as rift zones and mid-ocean ridges, 2) strike-slip boundaries where plates grind past each other, such as the San Andreas Fault, and 3) convergent boundaries that form large mountain ranges like the Andes. The generally narrow deformation zones that bound the plates exhibit complex strain patterns that evolve through time. During this evolution, plate boundary deformation is driven by tectonic forces arising from Earth's deep interior and from within the lithosphere, but also by surface processes, which erode topographic highs and deposit the resulting sediment into regions of low elevation. Through the combination of these factors, the surface of the Earth evolves in a highly dynamic way with several feedback mechanisms. At divergent boundaries, for example, tensional stresses thin the lithosphere, forcing uplift and subsequent erosion of rift flanks, which creates a sediment source. Meanwhile, the rift center subsides and becomes a topographic low where sediments accumulate. This mass transfer from foot- to hanging wall plays an important role during rifting, as it prolongs the activity of individual normal faults. When rifting continues, continents are eventually split apart, exhuming Earth's mantle and creating new oceanic crust. Because of the complex interplay between deep tectonic forces that shape plate boundaries and mass redistribution at the Earth's surface, it is vital to understand feedbacks between the two domains and how they shape our planet. In this study I aim to provide insight on two primary questions: 1) How do divergent and strike-slip plate boundaries evolve? 2) How is this evolution, on a large temporal scale and a smaller structural scale, affected by the alteration of the surface through erosion and deposition? This is done in three chapters that examine the evolution of divergent and strike-slip plate boundaries using numerical models. Chapter 2 takes a detailed look at the evolution of rift systems using two-dimensional models. Specifically, I extract faults from a range of rift models and correlate them through time to examine how fault networks evolve in space and time. By implementing a two-way coupling between the geodynamic code ASPECT and landscape evolution code FastScape, I investigate how the fault network and rift evolution are influenced by the system's erosional efficiency, which represents many factors like lithology or climate. In Chapter 3, I examine rift evolution from a three-dimensional perspective. In this chapter I study linkage modes for offset rifts to determine when fast-rotating plate-boundary structures known as continental microplates form. Chapter 4 uses the two-way numerical coupling between tectonics and landscape evolution to investigate how a strike-slip boundary responds to large sediment loads, and whether this is sufficient to form an entirely new type of flexural strike-slip basin.}, language = {en} }