@article{KummerowKindOnckenetal.2004, author = {Kummerow, J. and Kind, Rainer and Oncken, Onno and Giese, Peter and Ryberg, Trond and Wylegalla, Kurt and Scherbaum, Frank}, title = {A natural and controlled source seismic profile through the Eastern Alps : TRANSALP}, year = {2004}, abstract = {The combined passive and active seismic TRANSALP experiment produced an unprecedented high-resolution crustal image of the Eastern Alps between Munich and Venice. The European and Adriatic Mohos (EM and AM, respectively) are clearly imaged with different seismic techniques: near-vertical incidence reflections and receiver functions (RFs). The European Moho dips gently southward from 35 km beneath the northern foreland to a maximum depth of 55 km beneath the central part of the Eastern Alps, whereas the Adriatic Moho is imaged primarily by receiver functions at a relatively constant depth of about 40 km. In both data sets, we have also detected first-order Alpine shear zones, such as the Helvetic detachment, Inntal fault and SubTauern ramp in the north. Apart from the Valsugana thrust, receiver functions in the southern part of the Eastern Alps have also observed a north dipping interface, which may penetrate the entire Adriatic crust [Adriatic Crust Interface (ACI)]. Deep crustal seismicity may be related to the ACI. We interpret the ACI as the currently active retroshear zone in the doubly vergent Alpine collisional belt. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{HinzenWeberScherbaum2004, author = {Hinzen, K. G. and Weber, B. and Scherbaum, Frank}, title = {On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany}, issn = {1363-2469}, year = {2004}, abstract = {In recent years, H/V measurements have been increasingly used to map the thickness of sediment fill in sedimentary basins in the context of seismic hazard assessment. This parameter is believed to be an important proxy for the site effects in sedimentary basins (e.g. in the Los Angeles basin). Here we present the results of a test using this approach across an active normal fault in a structurally well known situation. Measurements on a 50 km long profile with 1 km station spacing clearly show a change in the frequency of the fundamental peak of H/V ratios with increasing thickness of the sediment layer in the eastern part of the Lower Rhine Embayment. Subsequently, a section of 10 km length across the Erft-Sprung system, a normal fault with ca. 750 m vertical offset, was measured with a station distance of 100 m. Frequencies of the first and second peaks and the first trough in the H/V spectra are used in a simple resonance model to estimate depths of the bedrock. While the frequency of the first peak shows a large scatter for sediment depths larger than ca. 500 m, the frequency of the first trough follows the changing thickness of the sediments across the fault. The lateral resolution is in the range of the station distance of 100 m. A power law for the depth dependence of the S-wave velocity derived from down hole measurements in an earlier study [Budny, 1984] and power laws inverted from dispersion analysis of micro array measurements [Scherbaum et al., 2002] agree with the results from the H/V ratios of this study}, language = {en} } @article{MalischewskyScherbaum2004, author = {Malischewsky, Peter G. and Scherbaum, Frank}, title = {Love's formula and H/V-ratio (ellipticity) of Rayleigh waves}, issn = {0165-2125}, year = {2004}, abstract = {The ellipticity of Rayleigh surface waves, which is an important parameter characterizing the propagation medium, is studied for several models with increasing complexity. While the main focus lies on theory, practical implications of the use of the horizontal to vertical component ratio (H/V-ratio) to Study the subsurface structure are considered as well. Love's approximation of the ellipticity for an incompressible layer over an incompressible half-space is critically discussed especially concerning its applicability for different impedance contrasts. The main result is an analytically exact formula of H/V for a 2-layer model of compressible media, which is a generalization of Love's formula. It turns out that for a limited range of models Love's approximation can be used also in the general case. (C) 2003 Elsevier B.V. All rights reserved}, language = {en} } @article{FalsaperlaWassermannScherbaum2002, author = {Falsaperla, Susanna and Wassermann, Joachim and Scherbaum, Frank}, title = {Solid earth - 29. Polarization analyses of broadband seismic data recorded on Stromboli Volcano (Italy) from 1996 to 1999 (DOI 10.1029-2001GLO14300)}, year = {2002}, language = {en} } @inproceedings{HainzlScherbaumZoeller2006, author = {Hainzl, Sebastian and Scherbaum, Frank and Z{\"o}ller, Gert}, title = {Spatiotemporal earthquake patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7267}, year = {2006}, abstract = {Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {en} } @misc{HiemerRoesslerScherbaum2010, author = {Hiemer, Stefan and R{\"o}ßler, Dirk and Scherbaum, Frank}, title = {Catalog of Swarm Earthquakes in Vogtland /West Bohemia in 2008/09}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51710}, year = {2010}, abstract = {The document contains the catalog of earthquakes in Vogtland /West Bohemia within the period of 2008/10/19 -to- 2009/03/16. The events were recorded by a seismic mini-array operated by the Institute of Earthsciences, University of Postdam.}, language = {en} } @misc{HiemerRoesslerScherbaum2010, author = {Hiemer, Stefan and R{\"o}ßler, Dirk and Scherbaum, Frank}, title = {Catalog of Swarm Earthquakes in Vogtland /West Bohemia in 2008/09}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53837}, year = {2010}, abstract = {The document contains the catalog of earthquakes in Vogtland /West Bohemia within the period of 2008/10/19 -to- 2009/03/16. The events were recorded by a seismic mini-array operated by the Institute of Earthsciences, University of Postdam.}, language = {en} } @book{ScherbaumMzhavanadzeArometal.2020, author = {Scherbaum, Frank and Mzhavanadze, Nana and Arom, Simha and Rosenzweig, Sebastian and M{\"u}ller, Meinard}, title = {Tonal Organization of the Erkomaishvili Dataset: Pitches, Scales, Melodies and Harmonies}, series = {Computational Analysis Of Traditional Georgian Vocal Music}, journal = {Computational Analysis Of Traditional Georgian Vocal Music}, number = {1}, editor = {Scherbaum, Frank}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2702-2641}, doi = {10.25932/publishup-47614}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476141}, publisher = {Universit{\"a}t Potsdam}, pages = {64}, year = {2020}, abstract = {In this study we examine the tonal organization of a series of recordings of liturgical chants, sung in 1966 by the Georgian master singer Artem Erkomaishvili. This dataset is the oldest corpus of Georgian chants from which the time synchronous F0-trajectories for all three voices have been reliably determined (M{\"u}ller et al. 2017). It is therefore of outstanding importance for the understanding of the tuning principles of traditional Georgian vocal music. The aim of the present study is to use various computational methods to analyze what these recordings can contribute to the ongoing scientific dispute about traditional Georgian tuning systems. Starting point for the present analysis is the re-release of the original audio data together with estimated fundamental frequency (F0) trajectories for each of the three voices, beat annotations, and digital scores (Rosenzweig et al. 2020). We present synoptic models for the pitch and the harmonic interval distributions, which are the first of such models for which the complete Erkomaishvili dataset was used. We show that these distributions can be very compactly be expressed as Gaussian mixture models, anchored on discrete sets of pitch or interval values for the pitch and interval distributions, respectively. As part of our study we demonstrate that these pitch values, which we refer to as scale pitches, and which are determined as the mean values of the Gaussian mixture elements, define the scale degrees of the melodic sound scales which build the skeleton of Artem Erkomaishvili's intonation. The observation of consistent pitch bending of notes in melodic phrases, which appear in identical form in a group of chants, as well as the observation of harmonically driven intonation adjustments, which are clearly documented for all pure harmonic intervals, demonstrate that Artem Erkomaishvili intentionally deviates from the scale pitch skeleton quite freely. As a central result of our study, we proof that this melodic freedom is always constrained by the attracting influence of the scale pitches. Deviations of the F0-values of individual note events from the scale pitches at one instance of time are compensated for in the subsequent melodic steps. This suggests a deviation-compensation mechanism at the core of Artem Erkomaishvili's melody generation, which clearly honors the scales but still allows for a large degree of melodic flexibility. This model, which summarizes all partial aspects of our analysis, is consistent with the melodic scale models derived from the observed pitch distributions, as well as with the melodic and harmonic interval distributions. In addition to the tangible results of our work, we believe that our work has general implications for the determination of tuning models from audio data, in particular for non-tempered music.}, language = {en} } @article{VogelRiggelsenKorupetal.2014, author = {Vogel, Kristin and Riggelsen, Carsten and Korup, Oliver and Scherbaum, Frank}, title = {Bayesian network learning for natural hazard analyses}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-2605-2014}, pages = {2605 -- 2626}, year = {2014}, abstract = {Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks. In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach. Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments.}, language = {en} } @article{HinzenReamerScherbaum2013, author = {Hinzen, Klaus-G and Reamer, Sharon K. and Scherbaum, Frank}, title = {Slow fourier transform}, series = {Seismological research letters}, volume = {84}, journal = {Seismological research letters}, number = {2}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0895-0695}, doi = {10.1785/0220120139}, pages = {251 -- 257}, year = {2013}, language = {en} }