@article{FischerSaalfrank2021, author = {Fischer, Eric Wolfgang and Saalfrank, Peter}, title = {A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, volume = {155}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, number = {13}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0064013}, pages = {15}, year = {2021}, abstract = {We introduce a thermofield-based formulation of the multilayer multiconfigurational time-dependent Hartree (MCTDH) method to study finite temperature effects on non-adiabatic quantum dynamics from a non-stochastic, wave function perspective. Our approach is based on the formal equivalence of bosonic many-body theory at zero temperature with a doubled number of degrees of freedom and the thermal quasi-particle representation of bosonic thermofield dynamics (TFD). This equivalence allows for a transfer of bosonic many-body MCTDH as introduced by Wang and Thoss to the finite temperature framework of thermal quasi-particle TFD. As an application, we study temperature effects on the ultrafast internal conversion dynamics in pyrazine. We show that finite temperature effects can be efficiently accounted for in the construction of multilayer expansions of thermofield states in the framework presented herein. Furthermore, we find our results to agree well with existing studies on the pyrazine model based on the pMCTDH method.}, language = {en} } @inproceedings{WangBreternitzSchorr2021, author = {Wang, Zhenyu and Breternitz, Joachim and Schorr, Susan}, title = {Cation disorder in zinc-group IV- nitride and oxide nitride semiconductor materials revealed through neutron diffraction}, series = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, volume = {77}, booktitle = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, number = {Suppl.}, publisher = {Blackwell}, address = {Oxford [u.a.]}, issn = {2053-2733}, doi = {10.1107/S0108767321086256}, pages = {C1077 -- C1077}, year = {2021}, language = {en} } @article{DambacherKlieglHofmannetal.2006, author = {Dambacher, Michael and Kliegl, Reinhold and Hofmann, Markus and Jacobs, Arthur M.}, title = {Frequency and predictability effects on event-related potentials during reading}, issn = {0006-8993}, doi = {10.1016/j.brainres.2006.02.010}, year = {2006}, abstract = {Effects of frequency, predictability, and position of words on event-related potentials were assessed during word-by-word sentence reading in 48 subjects in an early and in a late time window corresponding to P200 and N400. Repeated measures multiple regression analyses revealed a P200 effect in the high-frequency range also the P200 was larger on words at the beginning and end of sentences than on words in the middle of sentences (i.e., a quadratic effect of word position). Predictability strongly affected the N400 component; the effect was stronger for low than for high- frequency words. The P200 frequency effect indicates that high-frequency words are lexically accessed very fast, independent of context information. Effects on the N400 suggest that predictability strongly moderates the late access especially of low-frequency words. Thus, contextual facilitation on the N400 appears to reflect both lexical and post- lexical stages of word recognition, questioning a strict classification into lexical and post-lexical processes.}, language = {en} } @article{GoettlichGraulichHuweretal.2022, author = {G{\"o}ttlich, Richard and Graulich, Nicole and Huwer, Johannes and Banerji, Amitabh}, title = {Analog und digital}, series = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, volume = {29}, journal = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.202200046}, pages = {182 -- 182}, year = {2022}, language = {de} } @article{PiekarczykHeitmannWeissetal.2020, author = {Piekarczyk, Andreas and Heitmann, Ulrike and Weiß, Karl-Anders and K{\"o}hl, Michael and Bald, Ilko}, title = {Development of a simple setup for temperature dependent mass spectrometric measurements for the investigation of outgassing effects in polymeric materials for solar application}, series = {Polymer testing}, volume = {81}, journal = {Polymer testing}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-9418}, doi = {10.1016/j.polymertesting.2019.106164}, pages = {8}, year = {2020}, abstract = {A simple experimental setup for temperature dependent mass spectrometric measurements has been constructed. It consists of a heated sample chamber and a mass spectrometer and allows for measurements under inert gas and ambient air. Based on initial measurements on two extruded polystyrene (XPS) samples a methodology for the data analysis has been developed. With this methodology the outgassing temperature of volatile compounds, which were used as blowing agents, has been identified. Furthermore, the composition of the blowing agents has been analyzed by temperature dependent mass spectra. The results indicate the use of ambient air in one material and a mixture of the banned blowing agents R142b and R22, both hydrochlorofluorocarbons (HCFC), in the other material. The here described methodology provides an easy to use approach to identify such compounds, for example as part of environmental or quality control.}, language = {en} } @article{LiebigSarhanSchmittetal.2020, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Schmitt, Clemens Nikolaus Zeno and Th{\"u}nemann, Andreas F. and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {Gold nanotriangles with crumble topping and their influence on catalysis and surface-enhanced raman spectroscopy}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201900745}, pages = {519 -- 526}, year = {2020}, abstract = {By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5 +/- 1 nm and an edge length of about 175 +/- 17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene in a yield of up to 50 \%. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing.}, language = {en} } @article{DengWangXuaetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xua, Xun and Gould, Oliver E. C. and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Polymeric sheet actuators with programmable bioinstructivity}, series = {PNAS}, volume = {117}, journal = {PNAS}, number = {4}, publisher = {National Academy of Sciences}, address = {Washington, DC}, issn = {1091-6490}, doi = {10.1073/pnas.1910668117}, pages = {1895 -- 1901}, year = {2020}, abstract = {Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.}, language = {en} } @article{EbelBald2022, author = {Ebel, Kenny and Bald, Ilko}, title = {Low-energy (5-20 eV) electron-induced single and double strand breaks in well-defined DNA sequences}, series = {Journal of physical chemistry letters}, volume = {13}, journal = {Journal of physical chemistry letters}, number = {22}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.2c00684}, pages = {4871 -- 4876}, year = {2022}, abstract = {Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEEs). The accurate quantification of DNA radiation damage of well-defined DNA target sequences in terms of absolute cross sections for LEE-induced DNA strand breaks is possible by the DNA origami technique; however, to date, it is possible only for DNA single strands. In the present work DNA double strand breaks in the DNA sequence 5 '-d(CAC)4/5 ' d(GTG)4 are compared with DNA single strand breaks in the oligonucleotides 5 '-d(CAC)4 and 5 '-d(GTG)4 upon irradiation with LEEs in the energy range from 5 to 20 eV. A maximum of strand break cross section was found around 7 and 10 eV independent of the DNA sequence, indicating that dissociative electron attachment is the underlying mechanism of strand breakage and confirming previous studies using plasmid DNA.}, language = {en} } @article{UhlemannBansseLudwigetal.1995, author = {Uhlemann, Erhard and Banße, Wolfgang and Ludwig, Eberhard and Schilde, Uwe and Weller, Frank and Lehmann, Andreas}, title = {Ligandenaustauschreaktionen von Bis(acetylacetonato)dioxo-molybd{\"a}n(VI). Kristallstrukturen von Salicyl- aldehyd-benzoylhydrazonato(2-)]dioxom ethanol-molybd{\"a}n(VI) und [Benzoylacetonbenzoylhydrazonato(2)]dioxo- triphenylphosphan-oxidmolybd{\"a}n(VI)}, year = {1995}, language = {de} } @article{UhlemannBansseLudwigetal.1995, author = {Uhlemann, Erhard and Banße, Wolfgang and Ludwig, Eberhard and Mickler, Wulfhard and Hahn, Ekkehardt and L{\"u}gger, Thomas and Lehmann, Andreas}, title = {Mangan(IV)-Komplexe mit dreiz{\"a}hnigen diaciden Liganden : Kristallstruktur von Acetylacetonato- salicylaldehyd-benzoylhydrazonato(2-methanol-mangan(III)}, year = {1995}, language = {de} }