@article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Quantification of sigma-acceptor and pi-donor stabilization in O, S and Hal analogues of N-heterocyclic carbenes (NHCs) on the magnetic criterion}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {125}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {33}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.1c05257}, pages = {7235 -- 7245}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of stable O, S and Hal analogues of N-heterocyclic carbenes (NHCs) have been calculated using the GIAO perturbation method employing the nucleus-independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSSs) of various sizes and directions. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the position of the present mesomeric equilibria (carbenes <-> ylides). The results are confirmed by geometry (bond angles and bond lengths), IR spectra, UV spectra, and C-13 chemical shifts of the electron-deficient carbon centers.}, language = {en} } @article{KleinpeterHeydenreichShainyan2021, author = {Kleinpeter, Erich and Heydenreich, Matthias and Shainyan, Bagrat A.}, title = {At the experimental limit of the NMR conformational analysis}, series = {Organic letters}, volume = {23}, journal = {Organic letters}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.0c03878}, pages = {405 -- 409}, year = {2021}, abstract = {The low temperature (95 K) NMR study of 1-Ph-1-t-Bu-silacyclohexane (1) showed the conformational equilibrium to be extremely one-sided toward thePh(ax),t-Bueq conformer. The barrier to interconversion has been measured (4.2-4.6 kcal/mol) and the conformational equilibrium [Delta nu = 1990.64 ppm (Si-29), 618.9 ppm (C-13), 1-Ph-ax:1-Pheq = (95.6-96.6\%):(3.4-4.4\%), K = 25 +/- 3, Delta G degrees = -RT ln K = 0.58-0.63 kcal/mol] analyzed. The assignment and quantification of the NMR signals is supported by MP2 and DFT calculations.}, language = {en} } @article{LiebigSarhanSchmittetal.2020, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Schmitt, Clemens Nikolaus Zeno and Th{\"u}nemann, Andreas F. and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {Gold nanotriangles with crumble topping and their influence on catalysis and surface-enhanced raman spectroscopy}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201900745}, pages = {519 -- 526}, year = {2020}, abstract = {By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5 +/- 1 nm and an edge length of about 175 +/- 17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene in a yield of up to 50 \%. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing.}, language = {en} } @article{DambacherKlieglHofmannetal.2006, author = {Dambacher, Michael and Kliegl, Reinhold and Hofmann, Markus and Jacobs, Arthur M.}, title = {Frequency and predictability effects on event-related potentials during reading}, issn = {0006-8993}, doi = {10.1016/j.brainres.2006.02.010}, year = {2006}, abstract = {Effects of frequency, predictability, and position of words on event-related potentials were assessed during word-by-word sentence reading in 48 subjects in an early and in a late time window corresponding to P200 and N400. Repeated measures multiple regression analyses revealed a P200 effect in the high-frequency range also the P200 was larger on words at the beginning and end of sentences than on words in the middle of sentences (i.e., a quadratic effect of word position). Predictability strongly affected the N400 component; the effect was stronger for low than for high- frequency words. The P200 frequency effect indicates that high-frequency words are lexically accessed very fast, independent of context information. Effects on the N400 suggest that predictability strongly moderates the late access especially of low-frequency words. Thus, contextual facilitation on the N400 appears to reflect both lexical and post- lexical stages of word recognition, questioning a strict classification into lexical and post-lexical processes.}, language = {en} } @misc{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1301}, issn = {1866-8372}, doi = {10.25932/publishup-57744}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577442}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{OliverLunnUrbanczykWochniaketal.2008, author = {Oliver, Sandra N. and Lunn, John Edward and Urbanczyk-Wochniak, Ewa and Lytovchenko, Anna and van Dongen, Joost T. and Faix, Benjamin and Schm{\"a}lzlin, Elmar and Fernie, Alisdair R. and Schm{\"a}elzlin, E. and Geigenberger, Peter}, title = {Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase}, doi = {10.1104/pp.108.126516}, year = {2008}, abstract = {The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.}, language = {en} } @article{ReppertSarhanSteteetal.2016, author = {Reppert, Alexander von and Sarhan, Radwan Mohamed and Stete, Felix and Pudell, Jan-Etienne and Del Fatti, N. and Crut, A. and Koetz, Joachim and Liebig, Ferenc and Prietzel, Claudia Christina and Bargheer, Matias}, title = {Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b11651}, pages = {28894 -- 28899}, year = {2016}, abstract = {We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate.}, language = {en} } @article{DengWangXuaetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xua, Xun and Gould, Oliver E. C. and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Polymeric sheet actuators with programmable bioinstructivity}, series = {PNAS}, volume = {117}, journal = {PNAS}, number = {4}, publisher = {National Academy of Sciences}, address = {Washington, DC}, issn = {1091-6490}, doi = {10.1073/pnas.1910668117}, pages = {1895 -- 1901}, year = {2020}, abstract = {Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.}, language = {en} } @article{GoettlichGraulichHuweretal.2022, author = {G{\"o}ttlich, Richard and Graulich, Nicole and Huwer, Johannes and Banerji, Amitabh}, title = {Analog und digital}, series = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, volume = {29}, journal = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.202200046}, pages = {182 -- 182}, year = {2022}, language = {de} }