@article{BogueGoesselJuergensenetal.1998, author = {Bogue, Ted and G{\"o}ssel, Michael and J{\"u}rgensen, Helmut and Zorian, Yervant}, title = {Built-in self-Test with an alternating output}, isbn = {0-8186-8359-7}, year = {1998}, language = {en} } @article{OtscheretnijGoesselSaposhnikovetal.1998, author = {Otscheretnij, Vitalij and G{\"o}ssel, Michael and Saposhnikov, Vl. V. and Saposhnikov, V. V.}, title = {Fault-tolerant self-dual circuits with error detection by parity- and group parity prediction}, year = {1998}, language = {en} } @article{SogomonyanSinghGoessel1998, author = {Sogomonyan, Egor S. and Singh, Adit D. and G{\"o}ssel, Michael}, title = {A multi-mode scannable memory element for high test application efficiency and delay testing}, year = {1998}, language = {en} } @article{DimitrievSaposhnikovGoesseletal.1997, author = {Dimitriev, Alexej and Saposhnikov, Vl. V. and G{\"o}ssel, Michael and Saposhnikov, V. V.}, title = {Self-dual duplication - a new method for on-line testing}, year = {1997}, language = {en} } @article{SaposhnikovMoshaninSaposhnikovetal.1997, author = {Saposhnikov, Vl. V. and Moshanin, Vl. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Self-dual multi output combinational circuits with output data compaction}, year = {1997}, language = {en} } @book{SeuringGoesselSogomonyan1997, author = {Seuring, Markus and G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {A structural approach for space compaction for concurrent checking and BIST}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {1997, 01}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ. Potsdam}, address = {Potsdam [u.a.]}, issn = {0946-7580}, pages = {19 S. : Ill.}, year = {1997}, language = {en} } @article{MorosovSaposhnikovGoessel1998, author = {Morosov, Andrej and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Self-Checking circuits with unidiectionally independent outputs}, year = {1998}, language = {en} } @article{KrstićWeidlingPetrovicetal., author = {Krstić, Miloš and Weidling, Stefan and Petrovic, Vladimir and Sogomonyan, Egor S.}, title = {Enhanced architectures for soft error detection and correction in combinational and sequential circuits}, series = {Microelectronics Reliability}, volume = {56}, journal = {Microelectronics Reliability}, issn = {0026-2714}, pages = {212 -- 220}, abstract = {In this paper two new methods for the design of fault-tolerant pipelined sequential and combinational circuits, called Error Detection and Partial Error Correction (EDPEC) and Full Error Detection and Correction (FEDC), are described. The proposed methods are based on an Error Detection Logic (EDC) in the combinational circuit part combined with fault tolerant memory elements implemented using fault tolerant master-slave flip-flops. If a transient error, due to a transient fault in the combinational circuit part is detected by the EDC, the error signal controls the latching stage of the flip-flops such that the previous correct state of the register stage is retained until the transient error disappears. The system can continue to work in its previous correct state and no additional recovery procedure (with typically reduced clock frequency) is necessary. The target applications are dataflow processing blocks, for which software-based recovery methods cannot be easily applied. The presented architectures address both single events as well as timing faults of arbitrarily long duration. An example of this architecture is developed and described, based on the carry look-ahead adder. The timing conditions are carefully investigated and simulated up to the layout level. The enhancement of the baseline architecture is demonstrated with respect to the achieved fault tolerance for the single event and timing faults. It is observed that the number of uncorrected single events is reduced by the EDPEC architecture by 2.36 times compared with previous solution. The FEDC architecture further reduces the number of uncorrected events to zero and outperforms the Triple Modular Redundancy (TMR) with respect to correction of timing faults. The power overhead of both new architectures is about 26-28\% lower than the TMR.}, language = {en} } @article{SchickBojahrHerzogetal.2014, author = {Schick, Daniel and Bojahr, Andre and Herzog, Marc and Shayduk, Roman and von Korff Schmising, Clemens and Bargheer, Matias}, title = {Udkm1Dsim-A simulation toolkit for 1D ultrafast dynamics in condensed matter}, series = {Computer physics communications : an international journal devoted to computational physics and computer programs in physics}, volume = {185}, journal = {Computer physics communications : an international journal devoted to computational physics and computer programs in physics}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-4655}, doi = {10.1016/j.cpc.2013.10.009}, pages = {651 -- 660}, year = {2014}, abstract = {The UDKM1DSIM toolbox is a collection of MATLAB (MathWorks Inc.) classes and routines to simulate the structural dynamics and the according X-ray diffraction response in one-dimensional crystalline sample structures upon an arbitrary time-dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary layered structures on the atomic level including a rich database of corresponding element-specific physical properties. The excitation of ultrafast dynamics is represented by an N-temperature model which is commonly applied for ultrafast optical excitations. Structural dynamics due to thermal stress are calculated by a linear-chain model of masses and springs. The resulting X-ray diffraction response is computed by dynamical X-ray theory. The UDKM1DSIM toolbox is highly modular and allows for introducing user-defined results at any step in the simulation procedure. Program summary Program title: udkm1Dsim Catalogue identifier: AERH_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERH_v1_0.html Licensing provisions: BSD No. of lines in distributed program, including test data, etc.: 130221 No. of bytes in distributed program, including test data, etc.: 2746036 Distribution format: tar.gz Programming language: Matlab (MathWorks Inc.). Computer: PC/Workstation. Operating system: Running Matlab installation required (tested on MS Win XP -7, Ubuntu Linux 11.04-13.04). Has the code been vectorized or parallelized?: Parallelization for dynamical XRD computations. Number of processors used: 1-12 for Matlab Parallel Computing Toolbox; 1 - infinity for Matlab Distributed Computing Toolbox External routines: Optional: Matlab Parallel Computing Toolbox, Matlab Distributed Computing Toolbox Required (included in the package): mtimesx Fast Matrix Multiply for Matlab by James Tursa, xml io tools by Jaroslaw Tuszynski, textprogressbar by Paul Proteus Nature of problem: Simulate the lattice dynamics of 1D crystalline sample structures due to an ultrafast excitation including thermal transport and compute the corresponding transient X-ray diffraction pattern. Solution method: Restrictions: The program is restricted to 1D sample structures and is further limited to longitudinal acoustic phonon modes and symmetrical X-ray diffraction geometries. Unusual features: The program is highly modular and allows the inclusion of user-defined inputs at any time of the simulation procedure. Running time: The running time is highly dependent on the number of unit cells in the sample structure and other simulation parameters such as time span or angular grid for X-ray diffraction computations. However, the example files are computed in approx. 1-5 min each on a 8 Core Processor with 16 GB RAM available.}, language = {en} }