@article{SaynischWagnerBaerenzungHornschildetal.2021, author = {Saynisch-Wagner, Jan and B{\"a}renzung, Julien and Hornschild, Aaron and Irrgang, Christopher and Thomas, Maik}, title = {Tide-induced magnetic signals and their errors derived from CHAMP and Swarm satellite magnetometer observations}, series = {Earth, planets and space : EPS}, volume = {73}, journal = {Earth, planets and space : EPS}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1880-5981}, doi = {10.1186/s40623-021-01557-3}, pages = {11}, year = {2021}, abstract = {Satellite-measured tidal magnetic signals are of growing importance. These fields are mainly used to infer Earth's mantle conductivity, but also to derive changes in the oceanic heat content. We present a new Kalman filter-based method to derive tidal magnetic fields from satellite magnetometers: KALMAG. The method's advantage is that it allows to study a precisely estimated posterior error covariance matrix. We present the results of a simultaneous estimation of the magnetic signals of 8 major tides from 17 years of Swarm and CHAMP data. For the first time, robustly derived posterior error distributions are reported along with the reported tidal magnetic fields. The results are compared to other estimates that are either based on numerical forward models or on satellite inversions of the same data. For all comparisons, maximal differences and the corresponding globally averaged RMSE are reported. We found that the inter-product differences are comparable with the KALMAG-based errors only in a global mean sense. Here, all approaches give values of the same order, e.g., 0.09 nT-0.14 nT for M2. Locally, the KALMAG posterior errors are up to one order smaller than the inter-product differences, e.g., 0.12 nT vs. 0.96 nT for M2.}, language = {en} } @article{RodriguezZuluagaStolleYamazakietal.2021, author = {Rodr{\´i}guez Zuluaga, Juan and Stolle, Claudia and Yamazaki, Yosuke and Xiong, Chao and England, Scott L.}, title = {A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly}, series = {Earth and Space Science : ESS}, volume = {8}, journal = {Earth and Space Science : ESS}, number = {2}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2020EA001529}, pages = {10}, year = {2021}, abstract = {Both ground- and satellite-based airglow imaging have significantly contributed to understanding the low-latitude ionosphere, especially the morphology and dynamics of the equatorial ionization anomaly (EIA). The NASA Global-scale Observations of the Limb and Disk (GOLD) mission focuses on far-ultraviolet airglow images from a geostationary orbit at 47.5 degrees W. This region is of particular interest at low magnetic latitudes because of the high magnetic declination (i.e., about -20 degrees) and proximity of the South Atlantic magnetic anomaly. In this study, we characterize an exciting feature of the nighttime EIA using GOLD observations from October 5, 2018 to June 30, 2020. It consists of a wavelike structure of a few thousand kilometers seen as poleward and equatorward displacements of the EIA-crests. Initial analyses show that the synoptic-scale structure is symmetric about the dip equator and appears nearly stationary with time over the night. In quasi-dipole coordinates, maxima poleward displacements of the EIA-crests are seen at about +/- 12 degrees latitude and around 20 and 60 degrees longitude (i.e., in geographic longitude at the dip equator, about 53 degrees W and 14 degrees W). The wavelike structure presents typical zonal wavelengths of about 6.7 x 10(3) km and 3.3 x 10(3) km. The structure's occurrence and wavelength are highly variable on a day-to-day basis with no apparent dependence on geomagnetic activity. In addition, a cluster or quasi-periodic wave train of equatorial plasma depletions (EPDs) is often detected within the synoptic-scale structure. We further outline the difference in observing these EPDs from FUV images and in situ measurements during a GOLD and Swarm mission conjunction.}, language = {en} } @article{SchindlerMoldenhawerStangeetal.2021, author = {Schindler, Daniel and Moldenhawer, Ted and Stange, Maike and Lepro, Valentino and Beta, Carsten and Holschneider, Matthias and Huisinga, Wilhelm}, title = {Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows}, series = {PLoS Computational Biology : a new community journal}, volume = {17}, journal = {PLoS Computational Biology : a new community journal}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1009268}, pages = {33}, year = {2021}, abstract = {Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.
Author summary Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum.}, language = {en} } @article{HartungWahlRastogietal.2021, author = {Hartung, Niklas and Wahl, Martin and Rastogi, Abhishake and Huisinga, Wilhelm}, title = {Nonparametric goodness-of-fit testing for parametric covariate models in pharmacometric analyses}, series = {CPT: pharmacometrics \& systems pharmacology}, volume = {10}, journal = {CPT: pharmacometrics \& systems pharmacology}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {2163-8306}, doi = {10.1002/psp4.12614}, pages = {564 -- 576}, year = {2021}, abstract = {The characterization of covariate effects on model parameters is a crucial step during pharmacokinetic/pharmacodynamic analyses. Although covariate selection criteria have been studied extensively, the choice of the functional relationship between covariates and parameters, however, has received much less attention. Often, a simple particular class of covariate-to-parameter relationships (linear, exponential, etc.) is chosen ad hoc or based on domain knowledge, and a statistical evaluation is limited to the comparison of a small number of such classes. Goodness-of-fit testing against a nonparametric alternative provides a more rigorous approach to covariate model evaluation, but no such test has been proposed so far. In this manuscript, we derive and evaluate nonparametric goodness-of-fit tests for parametric covariate models, the null hypothesis, against a kernelized Tikhonov regularized alternative, transferring concepts from statistical learning to the pharmacological setting. The approach is evaluated in a simulation study on the estimation of the age-dependent maturation effect on the clearance of a monoclonal antibody. Scenarios of varying data sparsity and residual error are considered. The goodness-of-fit test correctly identified misspecified parametric models with high power for relevant scenarios. The case study provides proof-of-concept of the feasibility of the proposed approach, which is envisioned to be beneficial for applications that lack well-founded covariate models.}, language = {en} } @article{HetheyHartungWangorschetal.2021, author = {Hethey, Christoph Philipp and Hartung, Niklas and Wangorsch, Gaby and Weisser, Karin and Huisinga, Wilhelm}, title = {Physiology-based toxicokinetic modelling of aluminium in rat and man}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {95}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {9}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-021-03107-y}, pages = {2977 -- 3000}, year = {2021}, abstract = {A sufficient quantitative understanding of aluminium (Al) toxicokinetics (TK) in man is still lacking, although highly desirable for risk assessment of Al exposure. Baseline exposure and the risk of contamination severely limit the feasibility of TK studies administering the naturally occurring isotope Al-27, both in animals and man. These limitations are absent in studies with Al-26 as a tracer, but tissue data are limited to animal studies. A TK model capable of inter-species translation to make valid predictions of Al levels in humans-especially in toxicological relevant tissues like bone and brain-is urgently needed. Here, we present: (i) a curated dataset which comprises all eligible studies with single doses of Al-26 tracer administered as citrate or chloride salts orally and/or intravenously to rats and humans, including ultra-long-term kinetic profiles for plasma, blood, liver, spleen, muscle, bone, brain, kidney, and urine up to 150 weeks; and (ii) the development of a physiology-based (PB) model for Al TK after intravenous and oral administration of aqueous Al citrate and Al chloride solutions in rats and humans. Based on the comprehensive curated Al-26 dataset, we estimated substance-dependent parameters within a non-linear mixed-effect modelling context. The model fitted the heterogeneous Al-26 data very well and was successfully validated against datasets in rats and humans. The presented PBTK model for Al, based on the most extensive and diverse dataset of Al exposure to date, constitutes a major advancement in the field, thereby paving the way towards a more quantitative risk assessment in humans.}, language = {en} } @phdthesis{Perera2021, author = {Perera, Upeksha}, title = {Solutions of direct and inverse Sturm-Liouville problems}, doi = {10.25932/publishup-53006}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-530064}, school = {Universit{\"a}t Potsdam}, pages = {x, 109}, year = {2021}, abstract = {Lie group method in combination with Magnus expansion is utilized to develop a universal method applicable to solving a Sturm-Liouville Problem (SLP) of any order with arbitrary boundary conditions. It is shown that the method has ability to solve direct regular and some singular SLPs of even orders (tested up to order eight), with a mix of boundary conditions (including non-separable and finite singular endpoints), accurately and efficiently. The present technique is successfully applied to overcome the difficulties in finding suitable sets of eigenvalues so that the inverse SLP problem can be effectively solved. Next, a concrete implementation to the inverse Sturm-Liouville problem algorithm proposed by Barcilon (1974) is provided. Furthermore, computational feasibility and applicability of this algorithm to solve inverse Sturm-Liouville problems of order n=2,4 is verified successfully. It is observed that the method is successful even in the presence of significant noise, provided that the assumptions of the algorithm are satisfied. In conclusion, this work provides methods that can be adapted successfully for solving a direct (regular/singular) or inverse SLP of an arbitrary order with arbitrary boundary conditions.}, language = {en} } @phdthesis{Maier2021, author = {Maier, Corinna}, title = {Bayesian data assimilation and reinforcement learning for model-informed precision dosing in oncology}, doi = {10.25932/publishup-51587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515870}, school = {Universit{\"a}t Potsdam}, pages = {x, 138}, year = {2021}, abstract = {While patients are known to respond differently to drug therapies, current clinical practice often still follows a standardized dosage regimen for all patients. For drugs with a narrow range of both effective and safe concentrations, this approach may lead to a high incidence of adverse events or subtherapeutic dosing in the presence of high patient variability. Model-informedprecision dosing (MIPD) is a quantitative approach towards dose individualization based on mathematical modeling of dose-response relationships integrating therapeutic drug/biomarker monitoring (TDM) data. MIPD may considerably improve the efficacy and safety of many drug therapies. Current MIPD approaches, however, rely either on pre-calculated dosing tables or on simple point predictions of the therapy outcome. These approaches lack a quantification of uncertainties and the ability to account for effects that are delayed. In addition, the underlying models are not improved while applied to patient data. Therefore, current approaches are not well suited for informed clinical decision-making based on a differentiated understanding of the individually predicted therapy outcome. The objective of this thesis is to develop mathematical approaches for MIPD, which (i) provide efficient fully Bayesian forecasting of the individual therapy outcome including associated uncertainties, (ii) integrate Markov decision processes via reinforcement learning (RL) for a comprehensive decision framework for dose individualization, (iii) allow for continuous learning across patients and hospitals. Cytotoxic anticancer chemotherapy with its major dose-limiting toxicity, neutropenia, serves as a therapeutically relevant application example. For more comprehensive therapy forecasting, we apply Bayesian data assimilation (DA) approaches, integrating patient-specific TDM data into mathematical models of chemotherapy-induced neutropenia that build on prior population analyses. The value of uncertainty quantification is demonstrated as it allows reliable computation of the patient-specific probabilities of relevant clinical quantities, e.g., the neutropenia grade. In view of novel home monitoring devices that increase the amount of TDM data available, the data processing of sequential DA methods proves to be more efficient and facilitates handling of the variability between dosing events. By transferring concepts from DA and RL we develop novel approaches for MIPD. While DA-guided dosing integrates individualized uncertainties into dose selection, RL-guided dosing provides a framework to consider delayed effects of dose selections. The combined DA-RL approach takes into account both aspects simultaneously and thus represents a holistic approach towards MIPD. Additionally, we show that RL can be used to gain insights into important patient characteristics for dose selection. The novel dosing strategies substantially reduce the occurrence of both subtherapeutic and life-threatening neutropenia grades in a simulation study based on a recent clinical study (CEPAC-TDM trial) compared to currently used MIPD approaches. If MIPD is to be implemented in routine clinical practice, a certain model bias with respect to the underlying model is inevitable, as the models are typically based on data from comparably small clinical trials that reflect only to a limited extent the diversity in real-world patient populations. We propose a sequential hierarchical Bayesian inference framework that enables continuous cross-patient learning to learn the underlying model parameters of the target patient population. It is important to note that the approach only requires summary information of the individual patient data to update the model. This separation of the individual inference from population inference enables implementation across different centers of care. The proposed approaches substantially improve current MIPD approaches, taking into account new trends in health care and aspects of practical applicability. They enable progress towards more informed clinical decision-making, ultimately increasing patient benefits beyond the current practice.}, language = {en} } @article{EngbertRabeKliegletal.2021, author = {Engbert, Ralf and Rabe, Maximilian Michael and Kliegl, Reinhold and Reich, Sebastian}, title = {Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics}, series = {Bulletin of mathematical biology : official journal of the Society for Mathematical Biology}, volume = {83}, journal = {Bulletin of mathematical biology : official journal of the Society for Mathematical Biology}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0092-8240}, doi = {10.1007/s11538-020-00834-8}, pages = {16}, year = {2021}, abstract = {Newly emerging pandemics like COVID-19 call for predictive models to implement precisely tuned responses to limit their deep impact on society. Standard epidemic models provide a theoretically well-founded dynamical description of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which creates challenges for containment strategies. However, spatial heterogeneity raises questions about the adequacy of modeling epidemic outbreaks on the level of a whole country. Here, we show that by applying sequential data assimilation to the stochastic SEIR epidemic model, we can capture the dynamic behavior of outbreaks on a regional level. Regional modeling, with relatively low numbers of infected and demographic noise, accounts for both spatial heterogeneity and stochasticity. Based on adapted models, short-term predictions can be achieved. Thus, with the help of these sequential data assimilation methods, more realistic epidemic models are within reach.}, language = {en} }