@article{MolkenthinDonnerReichetal.2022, author = {Molkenthin, Christian and Donner, Christian and Reich, Sebastian and Z{\"o}ller, Gert and Hainzl, Sebastian and Holschneider, Matthias and Opper, Manfred}, title = {GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model}, series = {Statistics and Computing}, volume = {32}, journal = {Statistics and Computing}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3174}, doi = {10.1007/s11222-022-10085-3}, pages = {25}, year = {2022}, abstract = {The spatio-temporal epidemic type aftershock sequence (ETAS) model is widely used to describe the self-exciting nature of earthquake occurrences. While traditional inference methods provide only point estimates of the model parameters, we aim at a fully Bayesian treatment of model inference, allowing naturally to incorporate prior knowledge and uncertainty quantification of the resulting estimates. Therefore, we introduce a highly flexible, non-parametric representation for the spatially varying ETAS background intensity through a Gaussian process (GP) prior. Combined with classical triggering functions this results in a new model formulation, namely the GP-ETAS model. We enable tractable and efficient Gibbs sampling by deriving an augmented form of the GP-ETAS inference problem. This novel sampling approach allows us to assess the posterior model variables conditioned on observed earthquake catalogues, i.e., the spatial background intensity and the parameters of the triggering function. Empirical results on two synthetic data sets indicate that GP-ETAS outperforms standard models and thus demonstrate the predictive power for observed earthquake catalogues including uncertainty quantification for the estimated parameters. Finally, a case study for the l'Aquila region, Italy, with the devastating event on 6 April 2009, is presented.}, language = {en} } @article{KucharskiErgintavAhmadetal.2019, author = {Kucharski, Maciej and Ergintav, Arzu and Ahmad, Wael Abdullah and Krstić, Miloš and Ng, Herman Jalli and Kissinger, Dietmar}, title = {A Scalable 79-GHz Radar Platform Based on Single-Channel Transceivers}, series = {IEEE Transactions on Microwave Theory and Techniques}, volume = {67}, journal = {IEEE Transactions on Microwave Theory and Techniques}, number = {9}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0018-9480}, doi = {10.1109/TMTT.2019.2914104}, pages = {3882 -- 3896}, year = {2019}, abstract = {This paper presents a scalable E-band radar platform based on single-channel fully integrated transceivers (TRX) manufactured using 130-nm silicon-germanium (SiGe) BiCMOS technology. The TRX is suitable for flexible radar systems exploiting massive multiple-input-multipleoutput (MIMO) techniques for multidimensional sensing. A fully integrated fractional-N phase-locked loop (PLL) comprising a 39.5-GHz voltage-controlled oscillator is used to generate wideband frequency-modulated continuous-wave (FMCW) chirp for E-band radar front ends. The TRX is equipped with a vector modulator (VM) for high-speed carrier modulation and beam-forming techniques. A single TRX achieves 19.2-dBm maximum output power and 27.5-dB total conversion gain with input-referred 1-dB compression point of -10 dBm. It consumes 220 mA from 3.3-V supply and occupies 3.96 mm(2) silicon area. A two-channel radar platform based on full-custom TRXs and PLL was fabricated to demonstrate high-precision and high-resolution FMCW sensing. The radar enables up to 10-GHz frequency ramp generation in 74-84-GHz range, which results in 1.5-cm spatial resolution. Due to high output power, thus high signal-to-noise ratio (SNR), a ranging precision of 7.5 mu m for a target at 2 m was achieved. The proposed architecture supports scalable multichannel applications for automotive FMCW using a single local oscillator (LO).}, language = {en} } @article{SharmaHainzlZoelleretal.2020, author = {Sharma, Shubham and Hainzl, Sebastian and Z{\"o}ller, Gert and Holschneider, Matthias}, title = {Is Coulomb stress the best choice for aftershock forecasting?}, series = {Journal of geophysical research : Solid earth}, volume = {125}, journal = {Journal of geophysical research : Solid earth}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2020JB019553}, pages = {12}, year = {2020}, abstract = {The Coulomb failure stress (CFS) criterion is the most commonly used method for predicting spatial distributions of aftershocks following large earthquakes. However, large uncertainties are always associated with the calculation of Coulomb stress change. The uncertainties mainly arise due to nonunique slip inversions and unknown receiver faults; especially for the latter, results are highly dependent on the choice of the assumed receiver mechanism. Based on binary tests (aftershocks yes/no), recent studies suggest that alternative stress quantities, a distance-slip probabilistic model as well as deep neural network (DNN) approaches, all are superior to CFS with predefined receiver mechanism. To challenge this conclusion, which might have large implications, we use 289 slip inversions from SRCMOD database to calculate more realistic CFS values for a layered half-space and variable receiver mechanisms. We also analyze the effect of the magnitude cutoff, grid size variation, and aftershock duration to verify the use of receiver operating characteristic (ROC) analysis for the ranking of stress metrics. The observations suggest that introducing a layered half-space does not improve the stress maps and ROC curves. However, results significantly improve for larger aftershocks and shorter time periods but without changing the ranking. We also go beyond binary testing and apply alternative statistics to test the ability to estimate aftershock numbers, which confirm that simple stress metrics perform better than the classic Coulomb failure stress calculations and are also better than the distance-slip probabilistic model.}, language = {en} } @phdthesis{Maier2021, author = {Maier, Corinna}, title = {Bayesian data assimilation and reinforcement learning for model-informed precision dosing in oncology}, doi = {10.25932/publishup-51587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515870}, school = {Universit{\"a}t Potsdam}, pages = {x, 138}, year = {2021}, abstract = {While patients are known to respond differently to drug therapies, current clinical practice often still follows a standardized dosage regimen for all patients. For drugs with a narrow range of both effective and safe concentrations, this approach may lead to a high incidence of adverse events or subtherapeutic dosing in the presence of high patient variability. Model-informedprecision dosing (MIPD) is a quantitative approach towards dose individualization based on mathematical modeling of dose-response relationships integrating therapeutic drug/biomarker monitoring (TDM) data. MIPD may considerably improve the efficacy and safety of many drug therapies. Current MIPD approaches, however, rely either on pre-calculated dosing tables or on simple point predictions of the therapy outcome. These approaches lack a quantification of uncertainties and the ability to account for effects that are delayed. In addition, the underlying models are not improved while applied to patient data. Therefore, current approaches are not well suited for informed clinical decision-making based on a differentiated understanding of the individually predicted therapy outcome. The objective of this thesis is to develop mathematical approaches for MIPD, which (i) provide efficient fully Bayesian forecasting of the individual therapy outcome including associated uncertainties, (ii) integrate Markov decision processes via reinforcement learning (RL) for a comprehensive decision framework for dose individualization, (iii) allow for continuous learning across patients and hospitals. Cytotoxic anticancer chemotherapy with its major dose-limiting toxicity, neutropenia, serves as a therapeutically relevant application example. For more comprehensive therapy forecasting, we apply Bayesian data assimilation (DA) approaches, integrating patient-specific TDM data into mathematical models of chemotherapy-induced neutropenia that build on prior population analyses. The value of uncertainty quantification is demonstrated as it allows reliable computation of the patient-specific probabilities of relevant clinical quantities, e.g., the neutropenia grade. In view of novel home monitoring devices that increase the amount of TDM data available, the data processing of sequential DA methods proves to be more efficient and facilitates handling of the variability between dosing events. By transferring concepts from DA and RL we develop novel approaches for MIPD. While DA-guided dosing integrates individualized uncertainties into dose selection, RL-guided dosing provides a framework to consider delayed effects of dose selections. The combined DA-RL approach takes into account both aspects simultaneously and thus represents a holistic approach towards MIPD. Additionally, we show that RL can be used to gain insights into important patient characteristics for dose selection. The novel dosing strategies substantially reduce the occurrence of both subtherapeutic and life-threatening neutropenia grades in a simulation study based on a recent clinical study (CEPAC-TDM trial) compared to currently used MIPD approaches. If MIPD is to be implemented in routine clinical practice, a certain model bias with respect to the underlying model is inevitable, as the models are typically based on data from comparably small clinical trials that reflect only to a limited extent the diversity in real-world patient populations. We propose a sequential hierarchical Bayesian inference framework that enables continuous cross-patient learning to learn the underlying model parameters of the target patient population. It is important to note that the approach only requires summary information of the individual patient data to update the model. This separation of the individual inference from population inference enables implementation across different centers of care. The proposed approaches substantially improve current MIPD approaches, taking into account new trends in health care and aspects of practical applicability. They enable progress towards more informed clinical decision-making, ultimately increasing patient benefits beyond the current practice.}, language = {en} } @article{MicheletBindelliniMelinetal.2023, author = {Michelet, Robin and Bindellini, Davide and Melin, Johanna and Neumann, Uta and Blankenstein, Oliver and Huisinga, Wilhelm and Johnson, Trevor N. and Whitaker, Martin J. and Ross, Richard and Kloft, Charlotte}, title = {Insights in the maturational processes influencing hydrocortisone pharmacokinetics in congenital adrenal hyperplasia patients using a middle-out approach}, series = {Frontiers in Pharmacology}, volume = {13}, journal = {Frontiers in Pharmacology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1663-9812}, doi = {10.3389/fphar.2022.1090554}, pages = {14}, year = {2023}, abstract = {Introduction: Hydrocortisone is the standard of care in cortisol replacement therapy for congenital adrenal hyperplasia patients. Challenges in mimicking cortisol circadian rhythm and dosing individualization can be overcome by the support of mathematical modelling. Previously, a non-linear mixed-effects (NLME) model was developed based on clinical hydrocortisone pharmacokinetic (PK) pediatric and adult data. Additionally, a physiologically-based pharmacokinetic (PBPK) model was developed for adults and a pediatric model was obtained using maturation functions for relevant processes. In this work, a middle-out approach was applied. The aim was to investigate whether PBPK-derived maturation functions could provide a better description of hydrocortisone PK inter-individual variability when implemented in the NLME framework, with the goal of providing better individual predictions towards precision dosing at the patient level. Methods: Hydrocortisone PK data from 24 adrenal insufficiency pediatric patients and 30 adult healthy volunteers were used for NLME model development, while the PBPK model and maturation functions of clearance and cortisol binding globulin (CBG) were developed based on previous studies published in the literature. Results: Clearance (CL) estimates from both approaches were similar for children older than 1 year (CL/F increasing from around 150 L/h to 500 L/h), while CBG concentrations differed across the whole age range (CBG(NLME) stable around 0.5 mu M vs. steady increase from 0.35 to 0.8 mu M for CBG (PBPK)). PBPK-derived maturation functions were subsequently included in the NLME model. After inclusion of the maturation functions, none, a part of, or all parameters were re-estimated. However, the inclusion of CL and/or CBG maturation functions in the NLME model did not result in improved model performance for the CL maturation function (\& UDelta;OFV > -15.36) and the re-estimation of parameters using the CBG maturation function most often led to unstable models or individual CL prediction bias. Discussion: Three explanations for the observed discrepancies could be postulated, i) non-considered maturation of processes such as absorption or first-pass effect, ii) lack of patients between 1 and 12 months, iii) lack of correction of PBPK CL maturation functions derived from urinary concentration ratio data for the renal function relative to adults. These should be investigated in the future to determine how NLME and PBPK methods can work towards deriving insights into pediatric hydrocortisone PK.}, language = {en} } @article{KrippendorffOyarzunHuisinga2012, author = {Krippendorff, Ben-Fillippo and Oyarz{\´u}n, Diego A. and Huisinga, Wilhelm}, title = {Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling}, series = {Journal of pharmacokinetics and pharmacodynamics}, volume = {39}, journal = {Journal of pharmacokinetics and pharmacodynamics}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1567-567X}, doi = {10.1007/s10928-012-9243-7}, pages = {125 -- 139}, year = {2012}, abstract = {Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity.}, language = {en} } @article{WeissHuisinga2011, author = {Weiss, Andrea Y. and Huisinga, Wilhelm}, title = {Error-controlled global sensitivity analysis of ordinary differential equations}, series = {Journal of computational physics}, volume = {230}, journal = {Journal of computational physics}, number = {17}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9991}, doi = {10.1016/j.jcp.2011.05.011}, pages = {6824 -- 6842}, year = {2011}, abstract = {We propose a novel strategy for global sensitivity analysis of ordinary differential equations. It is based on an error-controlled solution of the partial differential equation (PDE) that describes the evolution of the probability density function associated with the input uncertainty/variability. The density yields a more accurate estimate of the output uncertainty/variability, where not only some observables (such as mean and variance) but also structural properties (e.g., skewness, heavy tails, bi-modality) can be resolved up to a selected accuracy. For the adaptive solution of the PDE Cauchy problem we use the Rothe method with multiplicative error correction, which was originally developed for the solution of parabolic PDEs. We show that, unlike in parabolic problems, conservation properties necessitate a coupling of temporal and spatial accuracy to avoid accumulation of spatial approximation errors over time. We provide convergence conditions for the numerical scheme and suggest an implementation using approximate approximations for spatial discretization to efficiently resolve the coupling of temporal and spatial accuracy. The performance of the method is studied by means of low-dimensional case studies. The favorable properties of the spatial discretization technique suggest that this may be the starting point for an error-controlled sensitivity analysis in higher dimensions.}, language = {en} } @article{WeisseMiddletonHuisinga2010, author = {Weiße, Andrea Y. and Middleton, Richard H. and Huisinga, Wilhelm}, title = {Quantifying uncertainty, variability and likelihood for ordinary differential equation models}, issn = {1752-0509}, doi = {10.1186/1752-0509-4-144}, year = {2010}, abstract = {Background: In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results: The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well- known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions: While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.}, language = {en} } @article{PilariPreusseHuisinga2011, author = {Pilari, Sabine and Preusse, Cornelia and Huisinga, Wilhelm}, title = {Gestational influences on the pharmacokinetics of gestagenic drugs a combined in silico, in vitro and in vivo analysis}, series = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, volume = {42}, journal = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-0987}, doi = {10.1016/j.ejps.2010.12.003}, pages = {318 -- 331}, year = {2011}, abstract = {During preclinical development of a gestagenic drug, a significant increase of the total plasma concentration was observed after multiple dosing in pregnant rabbits, but not in (non-pregnant) rats or monkeys. We used a PBPK modeling approach in combination with in vitro and in vivo data to address the question to what extent the pharmacologically active free drug concentration is affected by pregnancy induced processes. In human, a significant increase in sex hormone binding globulin (SHBG), and an induction of hepatic CYP3A4 as well as plasma esterases is observed during pregnancy. We find that the observed increase in total plasma trough levels in rabbits can be explained as a combined result of (i) drug accumulation due to multiple dosing, (ii) increase of the binding protein SHBG, and (iii) clearance induction. For human, we predict that free drug concentrations in plasma would not increase during pregnancy above the steady state trough level for non-pregnant women.}, language = {en} } @article{vonKleistMenzStockeretal.2011, author = {von Kleist, Max and Menz, Stephan and Stocker, Hartmut and Arasteh, Keikawus and Schuette, Christof and Huisinga, Wilhelm}, title = {HIV quasispecies dynamics during pro-active treatment switching impact on multi-drug resistance and resistance archiving in latent reservoirs}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0018204}, pages = {12}, year = {2011}, abstract = {The human immunodeficiency virus (HIV) can be suppressed by highly active anti-retroviral therapy (HAART) in the majority of infected patients. Nevertheless, treatment interruptions inevitably result in viral rebounds from persistent, latently infected cells, necessitating lifelong treatment. Virological failure due to resistance development is a frequent event and the major threat to treatment success. Currently, it is recommended to change treatment after the confirmation of virological failure. However, at the moment virological failure is detected, drug resistant mutants already replicate in great numbers. They infect numerous cells, many of which will turn into latently infected cells. This pool of cells represents an archive of resistance, which has the potential of limiting future treatment options. The objective of this study was to design a treatment strategy for treatment-naive patients that decreases the likelihood of early treatment failure and preserves future treatment options. We propose to apply a single, pro-active treatment switch, following a period of treatment with an induction regimen. The main goal of the induction regimen is to decrease the abundance of randomly generated mutants that confer resistance to the maintenance regimen, thereby increasing subsequent treatment success. Treatment is switched before the overgrowth and archiving of mutant strains that carry resistance against the induction regimen and would limit its future re-use. In silico modelling shows that an optimal trade-off is achieved by switching treatment at \& 80 days after the initiation of antiviral therapy. Evaluation of the proposed treatment strategy demonstrated significant improvements in terms of resistance archiving and virological response, as compared to conventional HAART. While continuous pro-active treatment alternation improved the clinical outcome in a randomized trial, our results indicate that a similar improvement might also be reached after a single pro-active treatment switch. The clinical validity of this finding, however, remains to be shown by a corresponding trial.}, language = {en} }