@unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : I. The index of families of cone-degenerate operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26327}, year = {2002}, abstract = {We study the index problem for families of elliptic operators on manifolds with conical singularities. The relative index theorem concerning changes of the weight line is obtained. AN index theorem for families whose conormal symbols satisfy some symmetry conditions is derived.}, language = {en} } @unpublished{EgorovKondratievSchulze2001, author = {Egorov, Yu. and Kondratiev, V. and Schulze, Bert-Wolfgang}, title = {On completeness of eigenfunctions of an elliptic operator on a manifold with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25937}, year = {2001}, abstract = {Contents: 1 Introduction 2 Definitions 3 Rays of minimal growth 4 Completeness of root functions}, language = {en} } @unpublished{FladSchneiderSchulze2007, author = {Flad, Heinz-J{\"u}rgen and Schneider, Reinhold and Schulze, Bert-Wolfgang}, title = {Asymptotic regularity of solutions of Hartree-Fock equations with coulomb potential}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30268}, year = {2007}, abstract = {We study the asymptotic regularity of solutions of Hartree-Fock equations for Coulomb systems. In order to deal with singular Coulomb potentials, Fock operators are discussed within the calculus of pseudo-differential operators on conical manifolds. First, the non-self-consistent-field case is considered which means that the functions that enter into the nonlinear terms are not the eigenfunctions of the Fock operator itself. We introduce asymptotic regularity conditions on the functions that build up the Fock operator which guarantee ellipticity for the local part of the Fock operator on the open stretched cone R+ × S². This proves existence of a parametrix with a corresponding smoothing remainder from which it follows, via a bootstrap argument, that the eigenfunctions of the Fock operator again satisfy asymptotic regularity conditions. Using a fixed-point approach based on Cances and Le Bris analysis of the level-shifting algorithm, we show via another bootstrap argument, that the corresponding self-consistent-field solutions of the Hartree-Fock equation have the same type of asymptotic regularity.}, language = {en} } @unpublished{SchulzeTarkhanov2000, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Asymptotics of solutions to elliptic equatons on manifolds with corners}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25716}, year = {2000}, abstract = {We show an explicit link between the nature of a singular point and behaviour of the coefficients of the equation, under which formal asymptotic expansions are still available.}, language = {en} } @unpublished{Schulze1999, author = {Schulze, Bert-Wolfgang}, title = {Operator algebras with symbol hierarchies on manifolds with singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25647}, year = {1999}, abstract = {Problems for elliptic partial differential equations on manifolds M with singularities M' (here with piece-wise smooth geometry)are studied in terms of pseudo-differential algebras with hierarchies of symbols that consist of scalar and operator-valued components. Classical boundary value problems (with or without the transmission property) belong to the examples. They are a model for operator algebras on manifolds M with higher "polyhedral" singularities. The operators are block matrices that have upper left corners containing the pseudo-differential operators on the regular M\M' (plus certain Mellin and Green summands) and are degenerate (in streched coordinates) in a typical way near M'. By definition M' is again a manifold with singularities. The same is true of M'', and so on. The block matrices consist of trace, potential and Mellin and Green operators, acting between weighted Sobolev spaces on M(j) and M(k), with 0 ≤ j, k ≤ ord M; here M(0) denotes M, M(1) denotes M', etc. We generate these algebras, including their symbol hierarchies, by iterating so-called "edgifications" and "conifications" os algebras that have already been constructed, and we study ellipicity, parametrics and Fredholm property within these algebras.}, language = {en} } @unpublished{Schulze1999, author = {Schulze, Bert-Wolfgang}, title = {An algebra of boundary value problems not requiring Shapiro-Lopatinskil conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25596}, year = {1999}, abstract = {We construct an algebra of pseudo-differential boundary value problems that contains the classical Shapiro-Lopatinskij elliptic problems as well as all differential elliptic problems of Dirac type with APS boundary conditions, together with their parametrices. Global pseudo-differential projections on the boundary are used to define ellipticity and to show the Fredholm property in suitable scales of spaces.}, language = {en} } @unpublished{KapanadzeSchulzeWitt2000, author = {Kapanadze, David and Schulze, Bert-Wolfgang and Witt, Ingo}, title = {Coordinate invariance of the cone algebra with asymptotics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25671}, year = {2000}, abstract = {The cone algebra with discrete asymptotics on a manifold with conical singularities is shown to be invariant under natural coordinate changes, where the symbol structure (i.e., the Fuchsian interior symbol, conormal symbols of all orders) follows a corresponding transformation rule.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2000, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Part II: Quantization by the method of ordered operators (Noncommutative Analysis) : Chapter 1: Noncommutative Analysis: Main Ideas, Definitions, and Theorems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25762}, year = {2000}, abstract = {Content: 0.1 Preliminary Remarks Chapter 1: Noncommutative Analysis: Main Ideas, Definitions, and Theorems 1.1 Functions of One Operator (Functional Calculi) 1.2 Functions of Several Operators 1.3 Main Formulas of Operator Calculus 1.4 Main Tools of Noncommutative Analysis 1.5 Composition Laws and Ordered Representations}, language = {en} } @unpublished{RabinovichSchulzeTarkhanov1999, author = {Rabinovich, Vladimir and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Boundary value problems in domains with corners}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25552}, year = {1999}, abstract = {We describe Fredholm boundary value problems for differential equations in domains with intersecting cuspidal edges on the boundary.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin1999, author = {Nazaikinskii, Vladimir E. and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25582}, year = {1999}, abstract = {In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.}, language = {en} }