@article{Lewandowski2022, author = {Lewandowski, Max}, title = {Hadamard states for bosonic quantum field theory on globally hyperbolic spacetimes}, series = {Journal of mathematical physics}, volume = {63}, journal = {Journal of mathematical physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0022-2488}, doi = {10.1063/5.0055753}, pages = {34}, year = {2022}, abstract = {According to Radzikowski's celebrated results, bisolutions of a wave operator on a globally hyperbolic spacetime are of the Hadamard form iff they are given by a linear combination of distinguished parametrices i2(G˜aF-G˜F+G˜A-G˜R) in the sense of Duistermaat and H{\"o}rmander [Acta Math. 128, 183-269 (1972)] and Radzikowski [Commun. Math. Phys. 179, 529 (1996)]. Inspired by the construction of the corresponding advanced and retarded Green operator GA, GR as done by B{\"a}r, Ginoux, and Pf{\"a}ffle {Wave Equations on Lorentzian Manifolds and Quantization [European Mathematical Society (EMS), Z{\"u}rich, 2007]}, we construct the remaining two Green operators GF, GaF locally in terms of Hadamard series. Afterward, we provide the global construction of i2(G˜aF-G˜F), which relies on new techniques such as a well-posed Cauchy problem for bisolutions and a patching argument using Čech cohomology. This leads to global bisolutions of the Hadamard form, each of which can be chosen to be a Hadamard two-point-function, i.e., the smooth part can be adapted such that, additionally, the symmetry and the positivity condition are exactly satisfied.}, language = {en} } @article{Zoeller2022, author = {Z{\"o}ller, Gert}, title = {A note on the estimation of the maximum possible earthquake magnitude based on extreme value theory for the Groningen Gas Field}, series = {The bulletin of the Seismological Society of America : BSSA}, volume = {112}, journal = {The bulletin of the Seismological Society of America : BSSA}, number = {4}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120210307}, pages = {1825 -- 1831}, year = {2022}, abstract = {Extreme value statistics is a popular and frequently used tool to model the occurrence of large earthquakes. The problem of poor statistics arising from rare events is addressed by taking advantage of the validity of general statistical properties in asymptotic regimes. In this note, I argue that the use of extreme value statistics for the purpose of practically modeling the tail of the frequency-magnitude distribution of earthquakes can produce biased and thus misleading results because it is unknown to what degree the tail of the true distribution is sampled by data. Using synthetic data allows to quantify this bias in detail. The implicit assumption that the true M-max is close to the maximum observed magnitude M-max,M-observed restricts the class of the potential models a priori to those with M-max = M-max,M-observed + Delta M with an increment Delta M approximate to 0.5... 1.2. This corresponds to the simple heuristic method suggested by Wheeler (2009) and labeled :M-max equals M-obs plus an increment." The incomplete consideration of the entire model family for the frequency-magnitude distribution neglects, however, the scenario of a large so far unobserved earthquake.}, language = {en} } @article{KayaFreitag2022, author = {Kaya, Adem and Freitag, Melina A.}, title = {Conditioning analysis for discrete Helmholtz problems}, series = {Computers and mathematics with applications : an international journal}, volume = {118}, journal = {Computers and mathematics with applications : an international journal}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0898-1221}, doi = {10.1016/j.camwa.2022.05.016}, pages = {171 -- 182}, year = {2022}, abstract = {In this paper, we examine conditioning of the discretization of the Helmholtz problem. Although the discrete Helmholtz problem has been studied from different perspectives, to the best of our knowledge, there is no conditioning analysis for it. We aim to fill this gap in the literature. We propose a novel method in 1D to observe the near-zero eigenvalues of a symmetric indefinite matrix. Standard classification of ill-conditioning based on the matrix condition number is not true for the discrete Helmholtz problem. We relate the ill-conditioning of the discretization of the Helmholtz problem with the condition number of the matrix. We carry out analytical conditioning analysis in 1D and extend our observations to 2D with numerical observations. We examine several discretizations. We find different regions in which the condition number of the problem shows different characteristics. We also explain the general behavior of the solutions in these regions.}, language = {en} } @article{HoudebertZass2022, author = {Houdebert, Pierre and Zass, Alexander}, title = {An explicit Dobrushin uniqueness region for Gibbs point processes with repulsive interactions}, series = {Journal of applied probability / Applied Probability Trust}, volume = {59}, journal = {Journal of applied probability / Applied Probability Trust}, number = {2}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0021-9002}, doi = {10.1017/jpr.2021.70}, pages = {541 -- 555}, year = {2022}, abstract = {We present a uniqueness result for Gibbs point processes with interactions that come from a non-negative pair potential; in particular, we provide an explicit uniqueness region in terms of activity z and inverse temperature beta. The technique used relies on applying to the continuous setting the classical Dobrushin criterion. We also present a comparison to the two other uniqueness methods of cluster expansion and disagreement percolation, which can also be applied for this type of interaction.}, language = {en} } @article{EvansHyde2022, author = {Evans, Myfanwy E. and Hyde, Stephen T.}, title = {Symmetric Tangling of Honeycomb Networks}, series = {Symmetry}, volume = {14}, journal = {Symmetry}, edition = {9}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2073-8994}, doi = {10.3390/sym14091805}, pages = {1 -- 13}, year = {2022}, abstract = {Symmetric, elegantly entangled structures are a curious mathematical construction that has found their way into the heart of the chemistry lab and the toolbox of constructive geometry. Of particular interest are those structures—knots, links and weavings—which are composed locally of simple twisted strands and are globally symmetric. This paper considers the symmetric tangling of multiple 2-periodic honeycomb networks. We do this using a constructive methodology borrowing elements of graph theory, low-dimensional topology and geometry. The result is a wide-ranging enumeration of symmetric tangled honeycomb networks, providing a foundation for their exploration in both the chemistry lab and the geometers toolbox.}, language = {en} } @article{HydeEvans2022, author = {Hyde, Stephen T. and Evans, Myfanwy E.}, title = {Symmetric tangled Platonic polyhedra}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {119}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.2110345118}, pages = {10}, year = {2022}, abstract = {Conventional embeddings of the edge-graphs of Platonic polyhedra, {f,z}, where f,z denote the number of edges in each face and the edge-valence at each vertex, respectively, are untangled in that they can be placed on a sphere (S-2) such that distinct edges do not intersect, analogous to unknotted loops, which allow crossing-free drawings of S-1 on the sphere. The most symmetric (flag-transitive) realizations of those polyhedral graphs are those of the classical Platonic polyhedra, whose symmetries are *2fz, according to Conway's two-dimensional (2D) orbifold notation (equivalent to Schonflies symbols I-h, O-h, and T-d). Tangled Platonic {f,z} polyhedra-which cannot lie on the sphere without edge-crossings-are constructed as windings of helices with three, five, seven,... strands on multigenus surfaces formed by tubifying the edges of conventional Platonic polyhedra, have (chiral) symmetries 2fz (I, O, and T), whose vertices, edges, and faces are symmetrically identical, realized with two flags. The analysis extends to the "theta(z)" polyhedra, {2,z}. The vertices of these symmetric tangled polyhedra overlap with those of the Platonic polyhedra; however, their helicity requires curvilinear (or kinked) edges in all but one case. We show that these 2fz polyhedral tangles are maximally symmetric; more symmetric embeddings are necessarily untangled. On one hand, their topologies are very constrained: They are either self-entangled graphs (analogous to knots) or mutually catenated entangled compound polyhedra (analogous to links). On the other hand, an endless variety of entanglements can be realized for each topology. Simpler examples resemble patterns observed in synthetic organometallic materials and clathrin coats in vivo.}, language = {en} } @phdthesis{Hain2022, author = {Hain, Tobias Martin}, title = {Structure formation and identification in geometrically driven soft matter systems}, doi = {10.25932/publishup-55880}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558808}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 171}, year = {2022}, abstract = {Subdividing space through interfaces leads to many space partitions that are relevant to soft matter self-assembly. Prominent examples include cellular media, e.g. soap froths, which are bubbles of air separated by interfaces of soap and water, but also more complex partitions such as bicontinuous minimal surfaces. Using computer simulations, this thesis analyses soft matter systems in terms of the relationship between the physical forces between the system's constituents and the structure of the resulting interfaces or partitions. The focus is on two systems, copolymeric self-assembly and the so-called Quantizer problem, where the driving force of structure formation, the minimisation of the free-energy, is an interplay of surface area minimisation and stretching contributions, favouring cells of uniform thickness. In the first part of the thesis we address copolymeric phase formation with sharp interfaces. We analyse a columnar copolymer system "forced" to assemble on a spherical surface, where the perfect solution, the hexagonal tiling, is topologically prohibited. For a system of three-armed copolymers, the resulting structure is described by solutions of the so-called Thomson problem, the search of minimal energy configurations of repelling charges on a sphere. We find three intertwined Thomson problem solutions on a single sphere, occurring at a probability depending on the radius of the substrate. We then investigate the formation of amorphous and crystalline structures in the Quantizer system, a particulate model with an energy functional without surface tension that favours spherical cells of equal size. We find that quasi-static equilibrium cooling allows the Quantizer system to crystallise into a BCC ground state, whereas quenching and non-equilibrium cooling, i.e. cooling at slower rates then quenching, leads to an approximately hyperuniform, amorphous state. The assumed universality of the latter, i.e. independence of energy minimisation method or initial configuration, is strengthened by our results. We expand the Quantizer system by introducing interface tension, creating a model that we find to mimic polymeric micelle systems: An order-disorder phase transition is observed with a stable Frank-Caspar phase. The second part considers bicontinuous partitions of space into two network-like domains, and introduces an open-source tool for the identification of structures in electron microscopy images. We expand a method of matching experimentally accessible projections with computed projections of potential structures, introduced by Deng and Mieczkowski (1998). The computed structures are modelled using nodal representations of constant-mean-curvature surfaces. A case study conducted on etioplast cell membranes in chloroplast precursors establishes the double Diamond surface structure to be dominant in these plant cells. We automate the matching process employing deep-learning methods, which manage to identify structures with excellent accuracy.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Jens Walter}, title = {Random dynamics in collective behavior - consensus, clustering \& extinction of populations}, doi = {10.25932/publishup-55372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553725}, school = {Universit{\"a}t Potsdam}, pages = {242}, year = {2022}, abstract = {The echo chamber model describes the development of groups in heterogeneous social networks. By heterogeneous social network we mean a set of individuals, each of whom represents exactly one opinion. The existing relationships between individuals can then be represented by a graph. The echo chamber model is a time-discrete model which, like a board game, is played in rounds. In each round, an existing relationship is randomly and uniformly selected from the network and the two connected individuals interact. If the opinions of the individuals involved are sufficiently similar, they continue to move closer together in their opinions, whereas in the case of opinions that are too far apart, they break off their relationship and one of the individuals seeks a new relationship. In this paper we examine the building blocks of this model. We start from the observation that changes in the structure of relationships in the network can be described by a system of interacting particles in a more abstract space. These reflections lead to the definition of a new abstract graph that encompasses all possible relational configurations of the social network. This provides us with the geometric understanding necessary to analyse the dynamic components of the echo chamber model in Part III. As a first step, in Part 7, we leave aside the opinions of the inidividuals and assume that the position of the edges changes with each move as described above, in order to obtain a basic understanding of the underlying dynamics. Using Markov chain theory, we find upper bounds on the speed of convergence of an associated Markov chain to its unique stationary distribution and show that there are mutually identifiable networks that are not apparent in the dynamics under analysis, in the sense that the stationary distribution of the associated Markov chain gives equal weight to these networks. In the reversible cases, we focus in particular on the explicit form of the stationary distribution as well as on the lower bounds of the Cheeger constant to describe the convergence speed. The final result of Section 8, based on absorbing Markov chains, shows that in a reduced version of the echo chamber model, a hierarchical structure of the number of conflicting relations can be identified. We can use this structure to determine an upper bound on the expected absorption time, using a quasi-stationary distribution. This hierarchy of structure also provides a bridge to classical theories of pure death processes. We conclude by showing how future research can exploit this link and by discussing the importance of the results as building blocks for a full theoretical understanding of the echo chamber model. Finally, Part IV presents a published paper on the birth-death process with partial catastrophe. The paper is based on the explicit calculation of the first moment of a catastrophe. This first part is entirely based on an analytical approach to second degree recurrences with linear coefficients. The convergence to 0 of the resulting sequence as well as the speed of convergence are proved. On the other hand, the determination of the upper bounds of the expected value of the population size as well as its variance and the difference between the determined upper bound and the actual value of the expected value. For these results we use almost exclusively the theory of ordinary nonlinear differential equations.}, language = {en} } @phdthesis{Schanner2022, author = {Schanner, Maximilian Arthus}, title = {Correlation based modeling of the archeomagnetic field}, doi = {10.25932/publishup-55587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555875}, school = {Universit{\"a}t Potsdam}, pages = {vii, 146}, year = {2022}, abstract = {The geomagnetic main field is vital for live on Earth, as it shields our habitat against the solar wind and cosmic rays. It is generated by the geodynamo in the Earth's outer core and has a rich dynamic on various timescales. Global models of the field are used to study the interaction of the field and incoming charged particles, but also to infer core dynamics and to feed numerical simulations of the geodynamo. Modern satellite missions, such as the SWARM or the CHAMP mission, support high resolution reconstructions of the global field. From the 19 th century on, a global network of magnetic observatories has been established. It is growing ever since and global models can be constructed from the data it provides. Geomagnetic field models that extend further back in time rely on indirect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic rocks and sediment records from lakes and seas. These indirect records come with (partially very large) uncertainties, introduced by the complex measurement methods and the dating procedure. Focusing on thermoremanent records only, the aim of this thesis is the development of a new modeling strategy for the global geomagnetic field during the Holocene, which takes the uncertainties into account and produces realistic estimates of the reliability of the model. This aim is approached by first considering snapshot models, in order to address the irregular spatial distribution of the records and the non-linear relation of the indirect observations to the field itself. In a Bayesian setting, a modeling algorithm based on Gaussian process regression is developed and applied to binned data. The modeling algorithm is then extended to the temporal domain and expanded to incorporate dating uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges arising from the size of the Holocene dataset. The central result of this thesis, including all of the aspects mentioned, is a new global geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we call it ArchKalmag14k. When considering the uncertainties that are produced together with the model, it is evident that before 6000 BCE the thermoremanent database is not sufficient to support global models. For times more recent, ArchKalmag14k can be used to analyze features of the field under consideration of posterior uncertainties. The algorithm for generating ArchKalmag14k can be applied to different datasets and is provided to the community as an open source python package.}, language = {en} } @misc{EvansHyde2022, author = {Evans, Myfanwy E. and Hyde, Stephen T.}, title = {Symmetric Tangling of Honeycomb Networks}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1282}, issn = {1866-8372}, doi = {10.25932/publishup-57084}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570842}, pages = {13}, year = {2022}, abstract = {Symmetric, elegantly entangled structures are a curious mathematical construction that has found their way into the heart of the chemistry lab and the toolbox of constructive geometry. Of particular interest are those structures—knots, links and weavings—which are composed locally of simple twisted strands and are globally symmetric. This paper considers the symmetric tangling of multiple 2-periodic honeycomb networks. We do this using a constructive methodology borrowing elements of graph theory, low-dimensional topology and geometry. The result is a wide-ranging enumeration of symmetric tangled honeycomb networks, providing a foundation for their exploration in both the chemistry lab and the geometers toolbox.}, language = {en} }