@article{NitzeGrosseJonesetal.2018, author = {Nitze, Ingmar and Grosse, Guido and Jones, Benjamin M. and Romanovsky, Vladimir E. and Boike, Julia}, title = {Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-07663-3}, pages = {11}, year = {2018}, abstract = {Local observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014. Our dataset spans four continental-scale transects in North America and Eurasia, covering similar to 10\% of the permafrost region. Lake area loss (-1.45\%) dominated the study domain with enhanced losses occurring at the boundary between discontinuous and continuous permafrost regions. Fires were the most extensive PRD across boreal regions (6.59\%), but in tundra regions (0.63\%) limited to Alaska. Retrogressive thaw slumps were abundant but highly localized (< 10(-5)\%). Our analysis synergizes the global-scale importance of PRDs. The findings highlight the need to include PRDs in next-generation land surface models to project the permafrost carbon feedback.}, language = {en} } @article{Roos2019, author = {Roos, Saskia}, title = {The Dirac operator under collapse to a smooth limit space}, series = {Annals of global analysis and geometry}, volume = {57}, journal = {Annals of global analysis and geometry}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0232-704X}, doi = {10.1007/s10455-019-09691-8}, pages = {121 -- 151}, year = {2019}, abstract = {Let (M-i, g(i))(i is an element of N) be a sequence of spin manifolds with uniform bounded curvature and diameter that converges to a lower-dimensional Riemannian manifold (B, h) in the Gromov-Hausdorff topology. Then, it happens that the spectrum of the Dirac operator converges to the spectrum of a certain first-order elliptic differential operator D-B on B. We give an explicit description of D-B and characterize the special case where D-B equals the Dirac operator on B.}, language = {en} } @article{GueneysuKeller2018, author = {G{\"u}neysu, Batu and Keller, Matthias}, title = {Scattering the Geometry of Weighted Graphs}, series = {Mathematical physics, analysis and geometry : an international journal devoted to the theory and applications of analysis and geometry to physics}, volume = {21}, journal = {Mathematical physics, analysis and geometry : an international journal devoted to the theory and applications of analysis and geometry to physics}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0172}, doi = {10.1007/s11040-018-9285-1}, pages = {15}, year = {2018}, abstract = {Given two weighted graphs (X, b(k), m(k)), k = 1, 2 with b(1) similar to b(2) and m(1) similar to m(2), we prove a weighted L-1-criterion for the existence and completeness of the wave operators W-+/- (H-2, H-1, I-1,I-2), where H-k denotes the natural Laplacian in l(2)(X, m(k)) w.r.t. (X, b(k), m(k)) and I-1,I-2 the trivial identification of l(2)(X, m(1)) with l(2) (X, m(2)). In particular, this entails a general criterion for the absolutely continuous spectra of H-1 and H-2 to be equal.}, language = {en} } @article{FedchenkoTarkhanov2017, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {A Rado theorem for the porous medium equation}, series = {Boletin de la Sociedad Matem{\´a}tica Mexicana}, volume = {24}, journal = {Boletin de la Sociedad Matem{\´a}tica Mexicana}, number = {2}, publisher = {Springer}, address = {Cham}, issn = {1405-213X}, doi = {10.1007/s40590-017-0169-3}, pages = {427 -- 437}, year = {2017}, abstract = {We prove that if u is a locally Lipschitz continuous function on an open set chi subset of Rn + 1 satisfying the nonlinear heat equation partial derivative(t)u = Delta(vertical bar u vertical bar(p-1) u), p > 1, weakly away from the zero set u(-1) (0) in chi, then u is a weak solution to this equation in all of chi.}, language = {en} } @article{DimitrovaKoppitz2017, author = {Dimitrova, Ilinka and Koppitz, J{\"o}rg}, title = {On the semigroup of all partial fence-preserving injections on a finite set}, series = {Journal of Algebra and Its Applications}, volume = {16}, journal = {Journal of Algebra and Its Applications}, number = {12}, publisher = {World Scientific}, address = {Singapore}, issn = {0219-4988}, doi = {10.1142/S0219498817502231}, pages = {14}, year = {2017}, abstract = {For n∈N , let Xn={a1,a2,…,an} be an n-element set and let F=(Xn;