@inproceedings{Graefener2007, author = {Gr{\"a}fener, G.}, title = {Clumping in hydrodynamic atmosphere models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17925}, year = {2007}, abstract = {We investigate the effect of wind clumping on the dynamics of Wolf-Rayet winds, by means of the Potsdam Wolf-Rayet (PoWR) hydrodynamic atmosphere models. In the limit of microclumping the radiative acceleration is generally enhanced. We examine the reasons for this effect and show that the resulting wind structure depends critically on the assumed radial dependence of the clumping factor D(r). The observed terminal wind velocities for WR stars imply that D(r) increases to very large values in the outer part of the wind, in agreement with the assumption of detached expanding shells.}, language = {en} } @inproceedings{VinkBenagliaDaviesetal.2007, author = {Vink, J. S. and Benaglia, P. and Davies, B. and de Koter, A. and Oudmaijer, R. D.}, title = {Advances in mass-loss predictions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17948}, year = {2007}, abstract = {We present the results of Monte Carlo mass-loss predictions for massive stars covering a wide range of stellar parameters. We critically test our predictions against a range of observed massloss rates - in light of the recent discussions on wind clumping. We also present a model to compute the clumping-induced polarimetric variability of hot stars and we compare this with observations of Luminous Blue Variables, for which polarimetric variability is larger than for O and Wolf-Rayet stars. Luminous Blue Variables comprise an ideal testbed for studies of wind clumping and wind geometry, as well as for wind strength calculations, and we propose they may be direct supernova progenitors.}, language = {en} } @inproceedings{Owocki2007, author = {Owocki, S. P.}, title = {Dynamical simulation of the "velocity-porosity" reduction in observed strength of stellar wind lines}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17992}, year = {2007}, abstract = {I use dynamical simulations of the line-driven instability to examine the potential role of the resulting flow structure in reducing the observed strength of wind absorption lines. Instead of the porosity length formalism used to model effects on continuum absorption, I suggest reductions in line strength can be better characterized in terms of a velocity clumping factor that is insensitive to spatial scales. Examples of dynamic spectra computed directly from instability simulations do exhibit a net reduction in absorption, but only at a modest 10-20\% level that is well short of the ca. factor 10 required by recent analyses of PV lines.}, language = {en} } @inproceedings{Runacres2007, author = {Runacres, M. C.}, title = {Hydrodynamical models of clumping beyond 50 R∗}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18030}, year = {2007}, abstract = {We present one-dimensional, time-dependent models of the clumps generated by the linedeshadowing instability. In order to follow the clumps out to distances of more than 1000 R∗, we use an efficient moving-box technique. We show that, within the approximations, the wind can remain clumped well into the formation region of the radio continuum.}, language = {en} } @inproceedings{Vink2007, author = {Vink, J. S.}, title = {Discussion: Hydrodynamic modeling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18046}, year = {2007}, language = {en} } @inproceedings{udDoula2007, author = {ud-Doula, A.}, title = {Large-scale wind structure due to magnetic fields}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18010}, year = {2007}, abstract = {Magnetic fields influence the dynamics of hot-star winds and create large scale structure. Based on numerical magnetohydrodynamic (MHD) simulations, we model the wind of θ¹ Ori C, and then use the SEI method to compute synthetic line profiles for a range of viewing angles as function of rotational phase. The resulting dynamic spectrum for a moderately strong line shows a distinct modulation, but with a phase that seems at odds with available observations.}, language = {en} } @inproceedings{KrtičkaPulsKubat2007, author = {Krtička, Jiri and Puls, Joachim and Kub{\´a}t, Jiř{\´i}}, title = {The influence of clumping on predicted O star wind parameters}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17969}, year = {2007}, abstract = {We study the influence of clumping on the predicted wind structure of O-type stars. For this purpose we artificially include clumping into our stationary wind models. When the clumps are assumed to be optically thin, the radiative line force increases compared to corresponding unclumped models, with a similar effect on either the mass-loss rate or the terminal velocity (depending on the onset of clumping). Optically thick clumps, alternatively, might be able to decrease the radiative force.}, language = {en} } @inproceedings{FeldmeierHamannRaetzeletal.2007, author = {Feldmeier, Achim and Hamann, Wolf-Rainer and R{\"a}tzel, D. and Oskinova, Lida}, title = {Hydrodynamic simulations of clumps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17975}, year = {2007}, abstract = {Clumps in hot star winds can originate from shock compression due to the line driven instability. One-dimensional hydrodynamic simulations reveal a radial wind structure consisting of highly compressed shells separated by voids, and colliding with fast clouds. Two-dimensional simulations are still largely missing, despite first attempts. Clumpiness dramatically affects the radiative transfer and thus all wind diagnostics in the UV, optical, and in X-rays. The microturbulence approximation applied hitherto is currently superseded by a more sophisticated radiative transfer in stochastic media. Besides clumps, i.e. jumps in the density stratification, so-called kinks in the velocity law, i.e. jumps in dv/dr, play an eminent role in hot star winds. Kinks are a new type of radiative-acoustic shock, and propagate at super-Abbottic speed.}, language = {en} }