@phdthesis{Lypova2021, author = {Lypova, Iryna}, title = {The galactic plane in gamma-rays above 10 TeV as seen with H.E.S.S.}, doi = {10.25932/publishup-50931}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509317}, school = {Universit{\"a}t Potsdam}, pages = {viii, 195}, year = {2021}, abstract = {The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes located in the Khomas Highland of Namibia. H.E.S.S. operates in a wide energy range from several tens of GeV to several tens of TeV, reaching the best sensitivity around 1 TeV or at lower energies. However, there are many important topics - such as the search for Galactic PeVatrons, the study of gamma-ray production scenarios for sources (hadronic vs. leptonic), EBL absorption studies - which require good sensitivity at energies above 10 TeV. This work aims at improving the sensitivity of H.E.S.S. and increasing the gamma-ray statistics at high energies. The study investigates an enlargement of the H.E.S.S. effective field of view using events with larger offset angles in the analysis. The greatest challenges in the analysis of large-offset events are a degradation of the reconstruction accuracy and a rise of the background rate as the offset angle increases. The more sophisticated direction reconstruction method (DISP) and improvements to the standard background rejection technique, which by themselves are effective ways to increase the gamma-ray statistics and improve the sensitivity of the analysis, are implemented to overcome the above-mentioned issues. As a result, the angular resolution at the preselection level is improved by 5 - 10\% for events at 0.5◦ offset angle and by 20 - 30\% for events at 2◦ offset angle. The background rate at large offset angles is decreased nearly to a level typical for offset angles below 2.5◦. Thereby, sensitivity improvements of 10 - 20\% are achieved for the proposed analysis compared to the standard analysis at small offset angles. Developed analysis also allows for the usage of events at large offset angles up to approximately 4◦, which was not possible before. This analysis method is applied to the analysis of the Galactic plane data above 10 TeV. As a result, 40 sources out of the 78 presented in the H.E.S.S. Galactic plane survey (HGPS) are detected above 10 TeV. Among them are representatives of all source classes that are present in the HGPS catalogue; namely, binary systems, supernova remnants, pulsar wind nebulae and composite objects. The potential of the improved analysis method is demonstrated by investigating the more than 10 TeV emission for two objects: the region associated with the shell-type SNR HESS J1731-347 and the PWN candidate associated with PSR J0855-4644 that is coincident with Vela Junior (HESS J0852-463).}, language = {en} } @phdthesis{Jonic2021, author = {Jonic, Sanja}, title = {Constraining black hole growth across cosmic time}, doi = {10.25932/publishup-50975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509753}, school = {Universit{\"a}t Potsdam}, pages = {viii, 175}, year = {2021}, abstract = {Active Galactic Nuclei (AGN) are considered to be the main powering source of active galaxies, where central Super Massive Black Holes (SMBHs), with masses between 106 and 109 M⊙ gravitationally pull the surrounding material via accre- tion. AGN phenomenon expands over a very wide range of luminosities, from the most luminous high-redshift quasars (QSOs), to the local Low-Luminosity AGN (LLAGN), with significantly weaker luminosities. While "typical" luminous AGNs distinguish themselves by their characteristical blue featureless continuum, the Broad Emission Lines (BELs) with Full Widths at Half Maximum (FWHM) in order of few thousands km s1, arising from the so-called Broad Line Region (BLR), and strong radio and/or X-ray emission, detection of LLAGNs on the other hand is quite chal- lenging due to their extremely weak emission lines, and absence of the power-law continuum. In order to fully understand AGN evolution and their duty-cycles across cosmic history, we need a proper knowledge of AGN phenomenon at all luminosi- ties and redshifts, as well as perspectives from different wavelength bands. In this thesis I present a search for AGN signatures in central spectra of 542 local (0.005 < z < 0.03) galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey. The adopted aperture of 3′′ × 3′′ corresponds to central ∼ 100 - 500 pc for the redshift range of CALIFA. Using the standard emission-line ratio diagnostic diagrams, we initially classified all CALIFA emission-line galaxies (526) into star- forming, LINER-like, Seyfert 2 and intermediates. We further detected signatures of the broad Hα component in 89 spectra from the sample, of which more than 60\% are present in the central spectra of LINER-like galaxies. These BELs are very weak, with luminosities in range 1038 - 1041 erg s-1, but with FWHMs between 1000 km s-1 and 6000 km s-1, comparable to those of luminous high-z AGN. This result implies that type 1 AGN are in fact quite frequent in the local Universe. We also identified additional 29 Seyfert 2 galaxies using the emission-line ratio diagnostic diagrams. Using the MBH - σ∗ correlation, we estimated black hole masses of 55 type 1 AGN from CALIFA, a sample for which we had estimates of bulge stellar velocity dispersions σ∗. We compared these masses to the ones that we estimated from the virial method and found large discrepancies. We analyzed the validity of both meth- ods for black hole mass estimation of local LLAGN, and concluded that most likely virial scaling relations can no longer be applied as a valid MBH estimator in such low-luminosity regime. These black holes accrete at very low rate, having Edding- ton ratios in range 4.1 × 10-5 - 2.4 × 10-3. Detection of BELs with such low lumi- nosities and at such low Eddington rates implies that these LLAGN are still able to form the BLR, although with probably modified structure of the central engine. In order to obtain full picture of black hole growth across cosmic time, it is es- sential that we study them in different stages of their activity. For that purpose, we estimated the broad AGN Luminosity Function (AGNLF) of our entire type 1 AGN sample using the 1/Vmax method. The shape of AGNLF indicates an apparent flattening below luminosities LHα ∼ 1039 erg s-1. Correspondingly we estimated ac- tive Black Hole Mass Function (BHMF) and Eddington Ration Distribution Function (ERDF) for a sub-sample of type 1 AGN for which we have MBH and λ estimates. The flattening is also present in both BHMF and ERDF, around log(MBH) ∼ 7.7 and log(λ) < 3, respectively. We estimated the fraction of active SMBHs in CALIFA by comparing our active BHMF to the one of the local quiescent SMBHs. The shape of the active fraction which decreases with increasing MBH, as well as the flattening of AGNLF, BHMF and ERDF is consistent with scenario of AGN cosmic downsizing. To complete AGN census in the CALIFA galaxy sample, it is necessary to search for them in various wavelength bands. For the purpose of completing the census we performed cross-correlations between all 542 CALIFA galaxies and multiwavelength surveys, Swift - BAT 105 month catalogue (in hard 15 - 195 keV X-ray band), and NRAO VLA Sky Survey (NVSS, in 1.4 GHz radio domain). This added 1 new AGN candidate in X-ray, and 7 in radio wavelength band to our local LLAGN count. It is possible to detect AGN emission signatures within 10 - 20 kpc outside of the central galactic regions. This may happen when the central AGN has recently switched off and the photoionized material is spread across the galaxy within the light-travel-time, or the photoionized material is blown away from the nucleus by outflows. In order to detect these extended AGN regions we constructed spatially resolved emission-line ratio diagnostic diagrams of all emission-line galaxies from the CALIFA, and found 1 new object that was previously not identified as AGN. Obtaining the complete AGN census in CALIFA, with five different AGN types, showed that LLAGN contribute a significant fraction of 24\% of the emission-line galaxies in the CALIFA sample. This result implies that AGN are quite common in the local Universe, and although being in very low activity stage, they contribute to large fraction of all local SMBHs. Within this thesis we approached the upper limit of AGN fraction in the local Universe and gained some deeper understanding of the LLAGN phenomenon.}, language = {en} } @phdthesis{Fritzewski2021, author = {Fritzewski, Dario Jasper}, title = {From fast to slow rotation in the open clusters NGC 2516 and NGC 3532}, doi = {10.25932/publishup-53135}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531356}, school = {Universit{\"a}t Potsdam}, pages = {viii, 137}, year = {2021}, abstract = {Angular momentum is a particularly sensitive probe into stellar evolution because it changes significantly over the main sequence life of a star. In this thesis, I focus on young main sequence stars of which some feature a rapid evolution in their rotation rates. This transition from fast to slow rotation is inadequately explored observationally and this work aims to provide insights into the properties and time scales but also investigates stellar rotation in young open clusters in general. I focus on the two open clusters NGC 2516 and NGC 3532 which are ~150 Myr (zero-age main sequence age) and ~300 Myr old, respectively. From 42 d-long time series photometry obtained at the Cerro Tololo Inter-American Observatory, I determine stellar rotation periods in both clusters. With accompanying low resolution spectroscopy, I measure radial velocities and chromospheric emission for NGC 3532, the former to establish a clean membership and the latter to probe the rotation-activity connection. The rotation period distribution derived for NGC 2516 is identical to that of four other coeval open clusters, including the Pleiades, which shows the universality of stellar rotation at the zero-age main sequence. Among the similarities (with the Pleiades) the "extended slow rotator sequence" is a new, universal, yet sparse, feature in the colour-period diagrams of open clusters. From a membership study, I find NGC 3532 to be one of the richest nearby open clusters with 660 confirmed radial velocity members and to be slightly sub-solar in metallicity. The stellar rotation periods for NGC 3532 are the first published for a 300 Myr-old open cluster, a key age to understand the transition from fast to slow rotation. The fast rotators at this age have significantly evolved beyond what is observed in NGC 2516 which allows to estimate the spin-down timescale and to explore the issues that angular momentum models have in describing this transition. The transitional sequence is also clearly identified in a colour-activity diagram of stars in NGC 3532. The synergies of the chromospheric activity and the rotation periods allow to understand the colour-activity-rotation connection for NGC 3532 in unprecedented detail and to estimate additional rotation periods for members of NGC 3532, including stars on the "extended slow rotator sequence". In conclusion, this thesis probes the transition from fast to slow rotation but has also more general implications for the angular momentum evolution of young open clusters.}, language = {en} }