@article{vonSteinauSteinrueckKurth2022, author = {von Steinau-Steinr{\"u}ck, Robert and Kurth, Paula Sophie}, title = {Das reformierte Statusfeststellungsverfahren in der Praxis}, series = {NJW spezial}, volume = {19}, journal = {NJW spezial}, number = {24}, publisher = {C.H. Beck}, address = {M{\"u}nchen}, issn = {1613-4621}, pages = {754 -- 755}, year = {2022}, abstract = {Das Statusfeststellungsverfahren erm{\"o}glicht auf Antrag bei der alleinzust{\"a}ndigen Deutschen Rentenversicherung Bund den Erhalt einer verbindlichen Einsch{\"a}tzung der h{\"a}ufig komplizierten und folgenschweren Abgrenzung einer selbstst{\"a}ndigen T{\"a}tigkeit von einer abh{\"a}ngigen Besch{\"a}ftigung. Zum 1.4.2022 wurde das Statusfeststellungsverfahren umfassend reformiert. In der Praxis haben sich die eingef{\"u}hrten Novellierungen bislang unterschiedlich bew{\"a}hrt.}, language = {de} } @article{vonSteinauSteinrueckMiller2022, author = {von Steinau-Steinr{\"u}ck, Robert and Miller, Denis}, title = {R{\"u}ckzahlungsklauseln f{\"u}r Fortbildungen}, series = {Neue juristische Wochenschrift : NJW Spezial}, volume = {19}, journal = {Neue juristische Wochenschrift : NJW Spezial}, number = {12}, publisher = {C.H. Beck}, address = {M{\"u}nchen}, issn = {1613-4621}, pages = {370 -- 371}, year = {2022}, abstract = {Mit Urteil vom 1.3.2022 (NZA2022, NZA Jahr 2022 Seite 780) hat das BAG erneut {\"u}ber die Wirksamkeit einer R{\"u}ckzahlungsklausel in einer Fortbildungsvereinbarung entschieden. Die Entscheidung reiht sich in eine nicht leicht zu durchschauende Anzahl von Urteilen hierzu ein. Sie dient uns zum Anlass, einen {\"U}berblick {\"u}ber die Rechtsprechung zu geben.}, language = {de} } @article{WenderingNikoloski2022, author = {Wendering, Philipp and Nikoloski, Zoran}, title = {COMMIT}, series = {PLoS Computational Biology : a new community journal / publ. by the Public Library of Science (PLoS) in association with the International Society for Computational Biology (ISCB)}, volume = {18}, journal = {PLoS Computational Biology : a new community journal / publ. by the Public Library of Science (PLoS) in association with the International Society for Computational Biology (ISCB)}, number = {3}, publisher = {Public Library of Science}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1009906}, pages = {24}, year = {2022}, abstract = {Composition and functions of microbial communities affect important traits in diverse hosts, from crops to humans. Yet, mechanistic understanding of how metabolism of individual microbes is affected by the community composition and metabolite leakage is lacking. Here, we first show that the consensus of automatically generated metabolic reconstructions improves the quality of the draft reconstructions, measured by comparison to reference models. We then devise an approach for gap filling, termed COMMIT, that considers metabolites for secretion based on their permeability and the composition of the community. By applying COMMIT with two soil communities from the Arabidopsis thaliana culture collection, we could significantly reduce the gap-filling solution in comparison to filling gaps in individual reconstructions without affecting the genomic support. Inspection of the metabolic interactions in the soil communities allows us to identify microbes with community roles of helpers and beneficiaries. Therefore, COMMIT offers a versatile fully automated solution for large-scale modelling of microbial communities for diverse biotechnological applications.
Author summaryMicrobial communities are important in ecology, human health, and crop productivity. However, detailed information on the interactions within natural microbial communities is hampered by the community size, lack of detailed information on the biochemistry of single organisms, and the complexity of interactions between community members. Metabolic models are comprised of biochemical reaction networks based on the genome annotation, and can provide mechanistic insights into community functions. Previous analyses of microbial community models have been performed with high-quality reference models or models generated using a single reconstruction pipeline. However, these models do not contain information on the composition of the community that determines the metabolites exchanged between the community members. In addition, the quality of metabolic models is affected by the reconstruction approach used, with direct consequences on the inferred interactions between community members. Here, we use fully automated consensus reconstructions from four approaches to arrive at functional models with improved genomic support while considering the community composition. We applied our pipeline to two soil communities from the Arabidopsis thaliana culture collection, providing only genome sequences. Finally, we show that the obtained models have 90\% genomic support and demonstrate that the derived interactions are corroborated by independent computational predictions.}, language = {en} } @article{WiemkerBunovaNeufeldetal.2022, author = {Wiemker, Veronika and Bunova, Anna and Neufeld, Maria and Gornyi, Boris and Yurasova, Elena and Konigorski, Stefan and Kalinina, Anna and Kontsevaya, Anna and Ferreira-Borges, Carina and Probst, Charlotte}, title = {Pilot study to evaluate usability and acceptability of the 'Animated Alcohol Assessment Tool' in Russian primary healthcare}, series = {Digital health}, volume = {8}, journal = {Digital health}, publisher = {Sage Publications}, address = {London}, issn = {2055-2076}, doi = {10.1177/20552076211074491}, pages = {11}, year = {2022}, abstract = {Background and aims: Accurate and user-friendly assessment tools quantifying alcohol consumption are a prerequisite to effective prevention and treatment programmes, including Screening and Brief Intervention. Digital tools offer new potential in this field. We developed the 'Animated Alcohol Assessment Tool' (AAA-Tool), a mobile app providing an interactive version of the World Health Organization's Alcohol Use Disorders Identification Test (AUDIT) that facilitates the description of individual alcohol consumption via culturally informed animation features. This pilot study evaluated the Russia-specific version of the Animated Alcohol Assessment Tool with regard to (1) its usability and acceptability in a primary healthcare setting, (2) the plausibility of its alcohol consumption assessment results and (3) the adequacy of its Russia-specific vessel and beverage selection. Methods: Convenience samples of 55 patients (47\% female) and 15 healthcare practitioners (80\% female) in 2 Russian primary healthcare facilities self-administered the Animated Alcohol Assessment Tool and rated their experience on the Mobile Application Rating Scale - User Version. Usage data was automatically collected during app usage, and additional feedback on regional content was elicited in semi-structured interviews. Results: On average, patients completed the Animated Alcohol Assessment Tool in 6:38 min (SD = 2.49, range = 3.00-17.16). User satisfaction was good, with all subscale Mobile Application Rating Scale - User Version scores averaging >3 out of 5 points. A majority of patients (53\%) and practitioners (93\%) would recommend the tool to 'many people' or 'everyone'. Assessed alcohol consumption was plausible, with a low number (14\%) of logically impossible entries. Most patients reported the Animated Alcohol Assessment Tool to reflect all vessels (78\%) and all beverages (71\%) they typically used. Conclusion: High acceptability ratings by patients and healthcare practitioners, acceptable completion time, plausible alcohol usage assessment results and perceived adequacy of region-specific content underline the Animated Alcohol Assessment Tool's potential to provide a novel approach to alcohol assessment in primary healthcare. After its validation, the Animated Alcohol Assessment Tool might contribute to reducing alcohol-related harm by facilitating Screening and Brief Intervention implementation in Russia and beyond.}, language = {en} } @article{WittigMirandaHoelzeretal.2022, author = {Wittig, Alice and Miranda, Fabio Malcher and H{\"o}lzer, Martin and Altenburg, Tom and Bartoszewicz, Jakub Maciej and Beyvers, Sebastian and Dieckmann, Marius Alfred and Genske, Ulrich and Giese, Sven Hans-Joachim and Nowicka, Melania and Richard, Hugues and Schiebenhoefer, Henning and Schmachtenberg, Anna-Juliane and Sieben, Paul and Tang, Ming and Tembrockhaus, Julius and Renard, Bernhard Y. and Fuchs, Stephan}, title = {CovRadar}, series = {Bioinformatics}, volume = {38}, journal = {Bioinformatics}, number = {17}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btac411}, pages = {4223 -- 4225}, year = {2022}, abstract = {The ongoing pandemic caused by SARS-CoV-2 emphasizes the importance of genomic surveillance to understand the evolution of the virus, to monitor the viral population, and plan epidemiological responses. Detailed analysis, easy visualization and intuitive filtering of the latest viral sequences are powerful for this purpose. We present CovRadar, a tool for genomic surveillance of the SARS-CoV-2 Spike protein. CovRadar consists of an analytical pipeline and a web application that enable the analysis and visualization of hundreds of thousand sequences. First, CovRadar extracts the regions of interest using local alignment, then builds a multiple sequence alignment, infers variants and consensus and finally presents the results in an interactive app, making accessing and reporting simple, flexible and fast.}, language = {en} }