@phdthesis{Bartz2022, author = {Bartz, Christian}, title = {Reducing the annotation burden: deep learning for optical character recognition using less manual annotations}, doi = {10.25932/publishup-55540}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555407}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 183}, year = {2022}, abstract = {Text is a ubiquitous entity in our world and daily life. We encounter it nearly everywhere in shops, on the street, or in our flats. Nowadays, more and more text is contained in digital images. These images are either taken using cameras, e.g., smartphone cameras, or taken using scanning devices such as document scanners. The sheer amount of available data, e.g., millions of images taken by Google Streetview, prohibits manual analysis and metadata extraction. Although much progress was made in the area of optical character recognition (OCR) for printed text in documents, broad areas of OCR are still not fully explored and hold many research challenges. With the mainstream usage of machine learning and especially deep learning, one of the most pressing problems is the availability and acquisition of annotated ground truth for the training of machine learning models because obtaining annotated training data using manual annotation mechanisms is time-consuming and costly. In this thesis, we address of how we can reduce the costs of acquiring ground truth annotations for the application of state-of-the-art machine learning methods to optical character recognition pipelines. To this end, we investigate how we can reduce the annotation cost by using only a fraction of the typically required ground truth annotations, e.g., for scene text recognition systems. We also investigate how we can use synthetic data to reduce the need of manual annotation work, e.g., in the area of document analysis for archival material. In the area of scene text recognition, we have developed a novel end-to-end scene text recognition system that can be trained using inexact supervision and shows competitive/state-of-the-art performance on standard benchmark datasets for scene text recognition. Our method consists of two independent neural networks, combined using spatial transformer networks. Both networks learn together to perform text localization and text recognition at the same time while only using annotations for the recognition task. We apply our model to end-to-end scene text recognition (meaning localization and recognition of words) and pure scene text recognition without any changes in the network architecture. In the second part of this thesis, we introduce novel approaches for using and generating synthetic data to analyze handwriting in archival data. First, we propose a novel preprocessing method to determine whether a given document page contains any handwriting. We propose a novel data synthesis strategy to train a classification model and show that our data synthesis strategy is viable by evaluating the trained model on real images from an archive. Second, we introduce the new analysis task of handwriting classification. Handwriting classification entails classifying a given handwritten word image into classes such as date, word, or number. Such an analysis step allows us to select the best fitting recognition model for subsequent text recognition; it also allows us to reason about the semantic content of a given document page without the need for fine-grained text recognition and further analysis steps, such as Named Entity Recognition. We show that our proposed approaches work well when trained on synthetic data. Further, we propose a flexible metric learning approach to allow zero-shot classification of classes unseen during the network's training. Last, we propose a novel data synthesis algorithm to train off-the-shelf pixel-wise semantic segmentation networks for documents. Our data synthesis pipeline is based on the famous Style-GAN architecture and can synthesize realistic document images with their corresponding segmentation annotation without the need for any annotated data!}, language = {en} } @phdthesis{Boeken2022, author = {B{\"o}ken, Bj{\"o}rn}, title = {Improving prediction accuracy using dynamic information}, doi = {10.25932/publishup-58512}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585125}, school = {Universit{\"a}t Potsdam}, pages = {xii, 160}, year = {2022}, abstract = {Accurately solving classification problems nowadays is likely to be the most relevant machine learning task. Binary classification separating two classes only is algorithmically simpler but has fewer potential applications as many real-world problems are multi-class. On the reverse, separating only a subset of classes simplifies the classification task. Even though existing multi-class machine learning algorithms are very flexible regarding the number of classes, they assume that the target set Y is fixed and cannot be restricted once the training is finished. On the other hand, existing state-of-the-art production environments are becoming increasingly interconnected with the advance of Industry 4.0 and related technologies such that additional information can simplify the respective classification problems. In light of this, the main aim of this thesis is to introduce dynamic classification that generalizes multi-class classification such that the target class set can be restricted arbitrarily to a non-empty class subset M of Y at any time between two consecutive predictions. This task is solved by a combination of two algorithmic approaches. First, classifier calibration, which transforms predictions into posterior probability estimates that are intended to be well calibrated. The analysis provided focuses on monotonic calibration and in particular corrects wrong statements that appeared in the literature. It also reveals that bin-based evaluation metrics, which became popular in recent years, are unjustified and should not be used at all. Next, the validity of Platt scaling, which is the most relevant parametric calibration approach, is analyzed in depth. In particular, its optimality for classifier predictions distributed according to four different families of probability distributions as well its equivalence with Beta calibration up to a sigmoidal preprocessing are proven. For non-monotonic calibration, extended variants on kernel density estimation and the ensemble method EKDE are introduced. Finally, the calibration techniques are evaluated using a simulation study with complete information as well as on a selection of 46 real-world data sets. Building on this, classifier calibration is applied as part of decomposition-based classification that aims to reduce multi-class problems to simpler (usually binary) prediction tasks. For the involved fusing step performed at prediction time, a new approach based on evidence theory is presented that uses classifier calibration to model mass functions. This allows the analysis of decomposition-based classification against a strictly formal background and to prove closed-form equations for the overall combinations. Furthermore, the same formalism leads to a consistent integration of dynamic class information, yielding a theoretically justified and computationally tractable dynamic classification model. The insights gained from this modeling are combined with pairwise coupling, which is one of the most relevant reduction-based classification approaches, such that all individual predictions are combined with a weight. This not only generalizes existing works on pairwise coupling but also enables the integration of dynamic class information. Lastly, a thorough empirical study is performed that compares all newly introduced approaches to existing state-of-the-art techniques. For this, evaluation metrics for dynamic classification are introduced that depend on corresponding sampling strategies. Thereafter, these are applied during a three-part evaluation. First, support vector machines and random forests are applied on 26 data sets from the UCI Machine Learning Repository. Second, two state-of-the-art deep neural networks are evaluated on five benchmark data sets from a relatively recent reference work. Here, computationally feasible strategies to apply the presented algorithms in combination with large-scale models are particularly relevant because a naive application is computationally intractable. Finally, reference data from a real-world process allowing the inclusion of dynamic class information are collected and evaluated. The results show that in combination with support vector machines and random forests, pairwise coupling approaches yield the best results, while in combination with deep neural networks, differences between the different approaches are mostly small to negligible. Most importantly, all results empirically confirm that dynamic classification succeeds in improving the respective prediction accuracies. Therefore, it is crucial to pass dynamic class information in respective applications, which requires an appropriate digital infrastructure.}, language = {en} } @phdthesis{Dehnert2022, author = {Dehnert, Maik}, title = {Studies on the Digital Transformation of Incumbent Organizations}, doi = {10.25932/publishup-54832}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548324}, school = {Universit{\"a}t Potsdam}, pages = {339}, year = {2022}, abstract = {Traditional organizations are strongly encouraged by emerging digital customer behavior and digital competition to transform their businesses for the digital age. Incumbents are particularly exposed to the field of tension between maintaining and renewing their business model. Banking is one of the industries most affected by digitalization, with a large stream of digital innovations around Fintech. Most research contributions focus on digital innovations, such as Fintech, but there are only a few studies on the related challenges and perspectives of incumbent organizations, such as traditional banks. Against this background, this dissertation examines the specific causes, effects and solutions for traditional banks in digital transformation - an underrepresented research area so far. The first part of the thesis examines how digitalization has changed the latent customer expectations in banking and studies the underlying technological drivers of evolving business-to-consumer (B2C) business models. Online consumer reviews are systematized to identify latent concepts of customer behavior and future decision paths as strategic digitalization effects. Furthermore, the service attribute preferences, the impact of influencing factors and the underlying customer segments are uncovered for checking accounts in a discrete choice experiment. The dissertation contributes here to customer behavior research in digital transformation, moving beyond the technology acceptance model. In addition, the dissertation systematizes value proposition types in the evolving discourse around smart products and services as key drivers of business models and market power in the platform economy. The second part of the thesis focuses on the effects of digital transformation on the strategy development of financial service providers, which are classified along with their firm performance levels. Standard types are derived based on fuzzy-set qualitative comparative analysis (fsQCA), with facade digitalization as one typical standard type for low performing incumbent banks that lack a holistic strategic response to digital transformation. Based on this, the contradictory impact of digitalization measures on key business figures is examined for German savings banks, confirming that the shift towards digital customer interaction was not accompanied by new revenue models diminishing bank profitability. The dissertation further contributes to the discourse on digitalized work designs and the consequences for job perceptions in banking customer advisory. The threefold impact of the IT support perceived in customer interaction on the job satisfaction of customer advisors is disentangled. In the third part of the dissertation, solutions are developed design-oriented for core action areas of digitalized business models, i.e., data and platforms. A consolidated taxonomy for data-driven business models and a future reference model for digital banking have been developed. The impact of the platform economy is demonstrated here using the example of the market entry by Bigtech. The role-based e3-value modeling is extended by meta-roles and role segments and linked to value co-creation mapping in VDML. In this way, the dissertation extends enterprise modeling research on platform ecosystems and value co-creation using the example of banking.}, language = {en} } @phdthesis{Draisbach2022, author = {Draisbach, Uwe}, title = {Efficient duplicate detection and the impact of transitivity}, doi = {10.25932/publishup-57214}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572140}, school = {Universit{\"a}t Potsdam}, pages = {x, 150}, year = {2022}, abstract = {Duplicate detection describes the process of finding multiple representations of the same real-world entity in the absence of a unique identifier, and has many application areas, such as customer relationship management, genealogy and social sciences, or online shopping. Due to the increasing amount of data in recent years, the problem has become even more challenging on the one hand, but has led to a renaissance in duplicate detection research on the other hand. This thesis examines the effects and opportunities of transitive relationships on the duplicate detection process. Transitivity implies that if record pairs ⟨ri,rj⟩ and ⟨rj,rk⟩ are classified as duplicates, then also record pair ⟨ri,rk⟩ has to be a duplicate. However, this reasoning might contradict with the pairwise classification, which is usually based on the similarity of objects. An essential property of similarity, in contrast to equivalence, is that similarity is not necessarily transitive. First, we experimentally evaluate the effect of an increasing data volume on the threshold selection to classify whether a record pair is a duplicate or non-duplicate. Our experiments show that independently of the pair selection algorithm and the used similarity measure, selecting a suitable threshold becomes more difficult with an increasing number of records due to an increased probability of adding a false duplicate to an existing cluster. Thus, the best threshold changes with the dataset size, and a good threshold for a small (possibly sampled) dataset is not necessarily a good threshold for a larger (possibly complete) dataset. As data grows over time, earlier selected thresholds are no longer a suitable choice, and the problem becomes worse for datasets with larger clusters. Second, we present with the Duplicate Count Strategy (DCS) and its enhancement DCS++ two alternatives to the standard Sorted Neighborhood Method (SNM) for the selection of candidate record pairs. DCS adapts SNMs window size based on the number of detected duplicates and DCS++ uses transitive dependencies to save complex comparisons for finding duplicates in larger clusters. We prove that with a proper (domain- and data-independent!) threshold, DCS++ is more efficient than SNM without loss of effectiveness. Third, we tackle the problem of contradicting pairwise classifications. Usually, the transitive closure is used for pairwise classifications to obtain a transitively closed result set. However, the transitive closure disregards negative classifications. We present three new and several existing clustering algorithms and experimentally evaluate them on various datasets and under various algorithm configurations. The results show that the commonly used transitive closure is inferior to most other clustering algorithms, especially for the precision of results. In scenarios with larger clusters, our proposed EMCC algorithm is, together with Markov Clustering, the best performing clustering approach for duplicate detection, although its runtime is longer than Markov Clustering due to the subexponential time complexity. EMCC especially outperforms Markov Clustering regarding the precision of the results and additionally has the advantage that it can also be used in scenarios where edge weights are not available.}, language = {en} } @phdthesis{Dreseler2022, author = {Dreseler, Markus}, title = {Automatic tiering for in-memory database systems}, doi = {10.25932/publishup-55825}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558253}, school = {Universit{\"a}t Potsdam}, pages = {vii, 143}, year = {2022}, abstract = {A decade ago, it became feasible to store multi-terabyte databases in main memory. These in-memory databases (IMDBs) profit from DRAM's low latency and high throughput as well as from the removal of costly abstractions used in disk-based systems, such as the buffer cache. However, as the DRAM technology approaches physical limits, scaling these databases becomes difficult. Non-volatile memory (NVM) addresses this challenge. This new type of memory is persistent, has more capacity than DRAM (4x), and does not suffer from its density-inhibiting limitations. Yet, as NVM has a higher latency (5-15x) and a lower throughput (0.35x), it cannot fully replace DRAM. IMDBs thus need to navigate the trade-off between the two memory tiers. We present a solution to this optimization problem. Leveraging information about access frequencies and patterns, our solution utilizes NVM's additional capacity while minimizing the associated access costs. Unlike buffer cache-based implementations, our tiering abstraction does not add any costs when reading data from DRAM. As such, it can act as a drop-in replacement for existing IMDBs. Our contributions are as follows: (1) As the foundation for our research, we present Hyrise, an open-source, columnar IMDB that we re-engineered and re-wrote from scratch. Hyrise enables realistic end-to-end benchmarks of SQL workloads and offers query performance which is competitive with other research and commercial systems. At the same time, Hyrise is easy to understand and modify as repeatedly demonstrated by its uses in research and teaching. (2) We present a novel memory management framework for different memory and storage tiers. By encapsulating the allocation and access methods of these tiers, we enable existing data structures to be stored on different tiers with no modifications to their implementation. Besides DRAM and NVM, we also support and evaluate SSDs and have made provisions for upcoming technologies such as disaggregated memory. (3) To identify the parts of the data that can be moved to (s)lower tiers with little performance impact, we present a tracking method that identifies access skew both in the row and column dimensions and that detects patterns within consecutive accesses. Unlike existing methods that have substantial associated costs, our access counters exhibit no identifiable overhead in standard benchmarks despite their increased accuracy. (4) Finally, we introduce a tiering algorithm that optimizes the data placement for a given memory budget. In the TPC-H benchmark, this allows us to move 90\% of the data to NVM while the throughput is reduced by only 10.8\% and the query latency is increased by 11.6\%. With this, we outperform approaches that ignore the workload's access skew and access patterns and increase the query latency by 20\% or more. Individually, our contributions provide novel approaches to current challenges in systems engineering and database research. Combining them allows IMDBs to scale past the limits of DRAM while continuing to profit from the benefits of in-memory computing.}, language = {en} } @phdthesis{Elsaid2022, author = {Elsaid, Mohamed Esameldin Mohamed}, title = {Virtual machines live migration cost modeling and prediction}, doi = {10.25932/publishup-54001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-540013}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 107}, year = {2022}, abstract = {Dynamic resource management is an essential requirement for private and public cloud computing environments. With dynamic resource management, the physical resources assignment to the cloud virtual resources depends on the actual need of the applications or the running services, which enhances the cloud physical resources utilization and reduces the offered services cost. In addition, the virtual resources can be moved across different physical resources in the cloud environment without an obvious impact on the running applications or services production. This means that the availability of the running services and applications in the cloud is independent on the hardware resources including the servers, switches and storage failures. This increases the reliability of using cloud services compared to the classical data-centers environments. In this thesis we briefly discuss the dynamic resource management topic and then deeply focus on live migration as the definition of the compute resource dynamic management. Live migration is a commonly used and an essential feature in cloud and virtual data-centers environments. Cloud computing load balance, power saving and fault tolerance features are all dependent on live migration to optimize the virtual and physical resources usage. As we will discuss in this thesis, live migration shows many benefits to cloud and virtual data-centers environments, however the cost of live migration can not be ignored. Live migration cost includes the migration time, downtime, network overhead, power consumption increases and CPU overhead. IT admins run virtual machines live migrations without an idea about the migration cost. So, resources bottlenecks, higher migration cost and migration failures might happen. The first problem that we discuss in this thesis is how to model the cost of the virtual machines live migration. Secondly, we investigate how to make use of machine learning techniques to help the cloud admins getting an estimation of this cost before initiating the migration for one of multiple virtual machines. Also, we discuss the optimal timing for a specific virtual machine before live migration to another server. Finally, we propose practical solutions that can be used by the cloud admins to be integrated with the cloud administration portals to answer the raised research questions above. Our research methodology to achieve the project objectives is to propose empirical models based on using VMware test-beds with different benchmarks tools. Then we make use of the machine learning techniques to propose a prediction approach for virtual machines live migration cost. Timing optimization for live migration is also proposed in this thesis based on using the cost prediction and data-centers network utilization prediction. Live migration with persistent memory clusters is also discussed at the end of the thesis. The cost prediction and timing optimization techniques proposed in this thesis could be practically integrated with VMware vSphere cluster portal such that the IT admins can now use the cost prediction feature and timing optimization option before proceeding with a virtual machine live migration. Testing results show that our proposed approach for VMs live migration cost prediction shows acceptable results with less than 20\% prediction error and can be easily implemented and integrated with VMware vSphere as an example of a commonly used resource management portal for virtual data-centers and private cloud environments. The results show that using our proposed VMs migration timing optimization technique also could save up to 51\% of migration time of the VMs migration time for memory intensive workloads and up to 27\% of the migration time for network intensive workloads. This timing optimization technique can be useful for network admins to save migration time with utilizing higher network rate and higher probability of success. At the end of this thesis, we discuss the persistent memory technology as a new trend in servers memory technology. Persistent memory modes of operation and configurations are discussed in detail to explain how live migration works between servers with different memory configuration set up. Then, we build a VMware cluster with persistent memory inside server and also with DRAM only servers to show the live migration cost difference between the VMs with DRAM only versus the VMs with persistent memory inside.}, language = {en} } @phdthesis{Gruener2022, author = {Gr{\"u}ner, Andreas}, title = {Towards practical and trust-enhancing attribute aggregation for self-sovereign identity}, doi = {10.25932/publishup-56745}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567450}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 175}, year = {2022}, abstract = {Identity management is at the forefront of applications' security posture. It separates the unauthorised user from the legitimate individual. Identity management models have evolved from the isolated to the centralised paradigm and identity federations. Within this advancement, the identity provider emerged as a trusted third party that holds a powerful position. Allen postulated the novel self-sovereign identity paradigm to establish a new balance. Thus, extensive research is required to comprehend its virtues and limitations. Analysing the new paradigm, initially, we investigate the blockchain-based self-sovereign identity concept structurally. Moreover, we examine trust requirements in this context by reference to patterns. These shapes comprise major entities linked by a decentralised identity provider. By comparison to the traditional models, we conclude that trust in credential management and authentication is removed. Trust-enhancing attribute aggregation based on multiple attribute providers provokes a further trust shift. Subsequently, we formalise attribute assurance trust modelling by a metaframework. It encompasses the attestation and trust network as well as the trust decision process, including the trust function, as central components. A secure attribute assurance trust model depends on the security of the trust function. The trust function should consider high trust values and several attribute authorities. Furthermore, we evaluate classification, conceptual study, practical analysis and simulation as assessment strategies of trust models. For realising trust-enhancing attribute aggregation, we propose a probabilistic approach. The method exerts the principle characteristics of correctness and validity. These values are combined for one provider and subsequently for multiple issuers. We embed this trust function in a model within the self-sovereign identity ecosystem. To practically apply the trust function and solve several challenges for the service provider that arise from adopting self-sovereign identity solutions, we conceptualise and implement an identity broker. The mediator applies a component-based architecture to abstract from a single solution. Standard identity and access management protocols build the interface for applications. We can conclude that the broker's usage at the side of the service provider does not undermine self-sovereign principles, but fosters the advancement of the ecosystem. The identity broker is applied to sample web applications with distinct attribute requirements to showcase usefulness for authentication and attribute-based access control within a case study.}, language = {en} } @phdthesis{Haarmann2022, author = {Haarmann, Stephan}, title = {WICKR: A Joint Semantics for Flexible Processes and Data}, doi = {10.25932/publishup-54613}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-546137}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 191}, year = {2022}, abstract = {Knowledge-intensive business processes are flexible and data-driven. Therefore, traditional process modeling languages do not meet their requirements: These languages focus on highly structured processes in which data plays a minor role. As a result, process-oriented information systems fail to assist knowledge workers on executing their processes. We propose a novel case management approach that combines flexible activity-centric processes with data models, and we provide a joint semantics using colored Petri nets. The approach is suited to model, verify, and enact knowledge-intensive processes and can aid the development of information systems that support knowledge work. Knowledge-intensive processes are human-centered, multi-variant, and data-driven. Typical domains include healthcare, insurances, and law. The processes cannot be fully modeled, since the underlying knowledge is too vast and changes too quickly. Thus, models for knowledge-intensive processes are necessarily underspecified. In fact, a case emerges gradually as knowledge workers make informed decisions. Knowledge work imposes special requirements on modeling and managing respective processes. They include flexibility during design and execution, ad-hoc adaption to unforeseen situations, and the integration of behavior and data. However, the predominantly used process modeling languages (e.g., BPMN) are unsuited for this task. Therefore, novel modeling languages have been proposed. Many of them focus on activities' data requirements and declarative constraints rather than imperative control flow. Fragment-Based Case Management, for example, combines activity-centric imperative process fragments with declarative data requirements. At runtime, fragments can be combined dynamically, and new ones can be added. Yet, no integrated semantics for flexible activity-centric process models and data models exists. In this thesis, Wickr, a novel case modeling approach extending fragment-based Case Management, is presented. It supports batch processing of data, sharing data among cases, and a full-fledged data model with associations and multiplicity constraints. We develop a translational semantics for Wickr targeting (colored) Petri nets. The semantics assert that a case adheres to the constraints in both the process fragments and the data models. Among other things, multiplicity constraints must not be violated. Furthermore, the semantics are extended to multiple cases that operate on shared data. Wickr shows that the data structure may reflect process behavior and vice versa. Based on its semantics, prototypes for executing and verifying case models showcase the feasibility of Wickr. Its applicability to knowledge-intensive and to data-centric processes is evaluated using well-known requirements from related work.}, language = {en} } @phdthesis{Jiang2022, author = {Jiang, Lan}, title = {Discovering metadata in data files}, doi = {10.25932/publishup-56620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566204}, school = {Universit{\"a}t Potsdam}, pages = {x, ii, 117}, year = {2022}, abstract = {It is estimated that data scientists spend up to 80\% of the time exploring, cleaning, and transforming their data. A major reason for that expenditure is the lack of knowledge about the used data, which are often from different sources and have heterogeneous structures. As a means to describe various properties of data, metadata can help data scientists understand and prepare their data, saving time for innovative and valuable data analytics. However, metadata do not always exist: some data file formats are not capable of storing them; metadata were deleted for privacy concerns; legacy data may have been produced by systems that were not designed to store and handle meta- data. As data are being produced at an unprecedentedly fast pace and stored in diverse formats, manually creating metadata is not only impractical but also error-prone, demanding automatic approaches for metadata detection. In this thesis, we are focused on detecting metadata in CSV files - a type of plain-text file that, similar to spreadsheets, may contain different types of content at arbitrary positions. We propose a taxonomy of metadata in CSV files and specifically address the discovery of three different metadata: line and cell type, aggregations, and primary keys and foreign keys. Data are organized in an ad-hoc manner in CSV files, and do not follow a fixed structure, which is assumed by common data processing tools. Detecting the structure of such files is a prerequisite of extracting information from them, which can be addressed by detecting the semantic type, such as header, data, derived, or footnote, of each line or each cell. We propose the supervised- learning approach Strudel to detect the type of lines and cells. CSV files may also include aggregations. An aggregation represents the arithmetic relationship between a numeric cell and a set of other numeric cells. Our proposed AggreCol algorithm is capable of detecting aggregations of five arithmetic functions in CSV files. Note that stylistic features, such as font style and cell background color, do not exist in CSV files. Our proposed algorithms address the respective problems by using only content, contextual, and computational features. Storing a relational table is also a common usage of CSV files. Primary keys and foreign keys are important metadata for relational databases, which are usually not present for database instances dumped as plain-text files. We propose the HoPF algorithm to holistically detect both constraints in relational databases. Our approach is capable of distinguishing true primary and foreign keys from a great amount of spurious unique column combinations and inclusion dependencies, which can be detected by state-of-the-art data profiling algorithms.}, language = {en} } @phdthesis{Melnichenko2022, author = {Melnichenko, Anna}, title = {Selfish Creation of Realistic Networks}, doi = {10.25932/publishup-54814}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548141}, school = {Universit{\"a}t Potsdam}, pages = {xi, 175}, year = {2022}, abstract = {Complex networks like the Internet or social networks are fundamental parts of our everyday lives. It is essential to understand their structural properties and how these networks are formed. A game-theoretic approach to network design problems has become of high interest in the last decades. The reason is that many real-world networks are the outcomes of decentralized strategic behavior of independent agents without central coordination. Fabrikant, Luthra, Maneva, Papadimitriou, and Schenker proposed a game-theoretic model aiming to explain the formation of the Internet-like networks. In this model, called the Network Creation Game, agents are associated with nodes of a network. Each agent seeks to maximize her centrality by establishing costly connections to other agents. The model is relatively simple but shows a high potential in modeling complex real-world networks. In this thesis, we contribute to the line of research on variants of the Network Creation Games. Inspired by real-world networks, we propose and analyze several novel network creation models. We aim to understand the impact of certain realistic modeling assumptions on the structure of the created networks and the involved agents' behavior. The first natural additional objective that we consider is the network's robustness. We consider a game where the agents seek to maximize their centrality and, at the same time, the stability of the created network against random edge failure. Our second point of interest is a model that incorporates an underlying geometry. We consider a network creation model where the agents correspond to points in some underlying space and where edge lengths are equal to the distances between the endpoints in that space. The geometric setting captures many physical real-world networks like transport networks and fiber-optic communication networks. We focus on the formation of social networks and consider two models that incorporate particular realistic behavior observed in real-world networks. In the first model, we embed the anti-preferential attachment link formation. Namely, we assume that the cost of the connection is proportional to the popularity of the targeted agent. Our second model is based on the observation that the probability of two persons to connect is inversely proportional to the length of their shortest chain of mutual acquaintances. For each of the four models above, we provide a complete game-theoretical analysis. In particular, we focus on distinctive structural properties of the equilibria, the hardness of computing a best response, the quality of equilibria in comparison to the centrally designed socially optimal networks. We also analyze the game dynamics, i.e., the process of sequential strategic improvements by the agents, and analyze the convergence to an equilibrium state and its properties.}, language = {en} } @phdthesis{Niephaus2022, author = {Niephaus, Fabio}, title = {Exploratory tool-building platforms for polyglot virtual machines}, doi = {10.25932/publishup-57177}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571776}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 249}, year = {2022}, abstract = {Polyglot programming allows developers to use multiple programming languages within the same software project. While it is common to use more than one language in certain programming domains, developers also apply polyglot programming for other purposes such as to re-use software written in other languages. Although established approaches to polyglot programming come with significant limitations, for example, in terms of performance and tool support, developers still use them to be able to combine languages. Polyglot virtual machines (VMs) such as GraalVM provide a new level of polyglot programming, allowing languages to directly interact with each other. This reduces the amount of glue code needed to combine languages, results in better performance, and enables tools such as debuggers to work across languages. However, only a little research has focused on novel tools that are designed to support developers in building software with polyglot VMs. One reason is that tool-building is often an expensive activity, another one is that polyglot VMs are still a moving target as their use cases and requirements are not yet well understood. In this thesis, we present an approach that builds on existing self-sustaining programming systems such as Squeak/Smalltalk to enable exploratory programming, a practice for exploring and gathering software requirements, and re-use their extensive tool-building capabilities in the context of polyglot VMs. Based on TruffleSqueak, our implementation for the GraalVM, we further present five case studies that demonstrate how our approach helps tool developers to design and build tools for polyglot programming. We further show that TruffleSqueak can also be used by application developers to build and evolve polyglot applications at run-time and by language and runtime developers to understand the dynamic behavior of GraalVM languages and internals. Since our platform allows all these developers to apply polyglot programming, it can further help to better understand the advantages, use cases, requirements, and challenges of polyglot VMs. Moreover, we demonstrate that our approach can also be applied to other polyglot VMs and that insights gained through it are transferable to other programming systems. We conclude that our research on tools for polyglot programming is an important step toward making polyglot VMs more approachable for developers in practice. With good tool support, we believe polyglot VMs can make it much more common for developers to take advantage of multiple languages and their ecosystems when building software.}, language = {en} } @phdthesis{Plauth2022, author = {Plauth, Max Frederik}, title = {Improving the Accessibility of Heterogeneous System Resources for Application Developers using Programming Abstractions}, doi = {10.25932/publishup-55811}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558118}, school = {Universit{\"a}t Potsdam}, pages = {ix, 133}, year = {2022}, abstract = {The heterogeneity of today's state-of-the-art computer architectures is confronting application developers with an immense degree of complexity which results from two major challenges. First, developers need to acquire profound knowledge about the programming models or the interaction models associated with each type of heterogeneous system resource to make efficient use thereof. Second, developers must take into account that heterogeneous system resources always need to exchange data with each other in order to work on a problem together. However, this data exchange is always associated with a certain amount of overhead, which is why the amounts of data exchanged should be kept as low as possible. This thesis proposes three programming abstractions to lessen the burdens imposed by these major challenges with the goal of making heterogeneous system resources accessible to a wider range of application developers. The lib842 compression library provides the first method for accessing the compression and decompression facilities of the NX-842 on-chip compression accelerator available in IBM Power CPUs from user space applications running on Linux. Addressing application development of scale-out GPU workloads, the CloudCL framework makes the resources of GPU clusters more accessible by hiding many aspects of distributed computing while enabling application developers to focus on the aspects of the data parallel programming model associated with GPUs. Furthermore, CloudCL is augmented with transparent data compression facilities based on the lib842 library in order to improve the efficiency of data transfers among cluster nodes. The improved data transfer efficiency provided by the integration of transparent data compression yields performance improvements ranging between 1.11x and 2.07x across four data-intensive scale-out GPU workloads. To investigate the impact of programming abstractions for data placement in NUMA systems, a comprehensive evaluation of the PGASUS framework for NUMA-aware C++ application development is conducted. On a wide range of test systems, the evaluation demonstrates that PGASUS does not only improve the developer experience across all workloads, but that it is also capable of outperforming NUMA-agnostic implementations with average performance improvements of 1.56x. Based on these programming abstractions, this thesis demonstrates that by providing a sufficient degree of abstraction, the accessibility of heterogeneous system resources can be improved for application developers without occluding performance-critical properties of the underlying hardware.}, language = {en} }