@article{PengLiuWangetal.2018, author = {Peng, Junjie and Liu, Danxu and Wang, Yingtao and Zeng, Ying and Cheng, Feng and Zhang, Wenqiang}, title = {Weight-based strategy for an I/O-intensive application at a cloud data center}, series = {Concurrency and computation : practice \& experience}, volume = {30}, journal = {Concurrency and computation : practice \& experience}, number = {19}, publisher = {Wiley}, address = {Hoboken}, issn = {1532-0626}, doi = {10.1002/cpe.4648}, pages = {14}, year = {2018}, abstract = {Applications with different characteristics in the cloud may have different resources preferences. However, traditional resource allocation and scheduling strategies rarely take into account the characteristics of applications. Considering that an I/O-intensive application is a typical type of application and that frequent I/O accesses, especially small files randomly accessing the disk, may lead to an inefficient use of resources and reduce the quality of service (QoS) of applications, a weight allocation strategy is proposed based on the available resources that a physical server can provide as well as the characteristics of the applications. Using the weight obtained, a resource allocation and scheduling strategy is presented based on the specific application characteristics in the data center. Extensive experiments show that the strategy is correct and can guarantee a high concurrency of I/O per second (IOPS) in a cloud data center with high QoS. Additionally, the strategy can efficiently improve the utilization of the disk and resources of the data center without affecting the service quality of applications.}, language = {en} } @article{SchaubWoltran2018, author = {Schaub, Torsten H. and Woltran, Stefan}, title = {Answer set programming unleashed!}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0550-z}, pages = {105 -- 108}, year = {2018}, abstract = {Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92-103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem's specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP's modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53-68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)]}, language = {en} } @misc{SchaubWoltran2018, author = {Schaub, Torsten H. and Woltran, Stefan}, title = {Special issue on answer set programming}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0554-8}, pages = {101 -- 103}, year = {2018}, language = {en} } @misc{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1062}, issn = {1866-8372}, doi = {10.25932/publishup-47052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470527}, pages = {18}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @article{GebserKaminskiKaufmannetal.2018, author = {Gebser, Martin and Kaminski, Roland and Kaufmann, Benjamin and L{\"u}hne, Patrick and Obermeier, Philipp and Ostrowski, Max and Romero Davila, Javier and Schaub, Torsten H. and Schellhorn, Sebastian and Wanko, Philipp}, title = {The Potsdam Answer Set Solving Collection 5.0}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0528-x}, pages = {181 -- 182}, year = {2018}, abstract = {The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems.}, language = {en} } @article{HaubeltNeubauerSchaubetal.2018, author = {Haubelt, Christian and Neubauer, Kai and Schaub, Torsten H. and Wanko, Philipp}, title = {Design space exploration with answer set programming}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0530-3}, pages = {205 -- 206}, year = {2018}, abstract = {The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE.}, language = {en} } @misc{LifschitzSchaubWoltran2018, author = {Lifschitz, Vladimir and Schaub, Torsten H. and Woltran, Stefan}, title = {Interview with Vladimir Lifschitz}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0552-x}, pages = {213 -- 218}, year = {2018}, abstract = {This interview with Vladimir Lifschitz was conducted by Torsten Schaub at the University of Texas at Austin in August 2017. The question set was compiled by Torsten Schaub and Stefan Woltran.}, language = {en} } @misc{BrewkaSchaubWoltran2018, author = {Brewka, Gerhard and Schaub, Torsten H. and Woltran, Stefan}, title = {Interview with Gerhard Brewka}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0549-5}, pages = {219 -- 221}, year = {2018}, abstract = {This interview with Gerhard Brewka was conducted by correspondance in May 2018. The question set was compiled by Torsten Schaub and Stefan Woltran.}, language = {en} } @article{GianniniRichterServettoetal.2018, author = {Giannini, Paola and Richter, Tim and Servetto, Marco and Zucca, Elena}, title = {Tracing sharing in an imperative pure calculus}, series = {Science of computer programming}, volume = {172}, journal = {Science of computer programming}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-6423}, doi = {10.1016/j.scico.2018.11.007}, pages = {180 -- 202}, year = {2018}, abstract = {We introduce a type and effect system, for an imperative object calculus, which infers sharing possibly introduced by the evaluation of an expression, represented as an equivalence relation among its free variables. This direct representation of sharing effects at the syntactic level allows us to express in a natural way, and to generalize, widely-used notions in literature, notably uniqueness and borrowing. Moreover, the calculus is pure in the sense that reduction is defined on language terms only, since they directly encode store. The advantage of this non-standard execution model with respect to a behaviorally equivalent standard model using a global auxiliary structure is that reachability relations among references are partly encoded by scoping. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @phdthesis{Vogel2018, author = {Vogel, Thomas}, title = {Model-driven engineering of self-adaptive software}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409755}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 357}, year = {2018}, abstract = {The development of self-adaptive software requires the engineering of an adaptation engine that controls the underlying adaptable software by a feedback loop. State-of-the-art approaches prescribe the feedback loop in terms of numbers, how the activities (e.g., monitor, analyze, plan, and execute (MAPE)) and the knowledge are structured to a feedback loop, and the type of knowledge. Moreover, the feedback loop is usually hidden in the implementation or framework and therefore not visible in the architectural design. Additionally, an adaptation engine often employs runtime models that either represent the adaptable software or capture strategic knowledge such as reconfiguration strategies. State-of-the-art approaches do not systematically address the interplay of such runtime models, which would otherwise allow developers to freely design the entire feedback loop. This thesis presents ExecUtable RuntimE MegAmodels (EUREMA), an integrated model-driven engineering (MDE) solution that rigorously uses models for engineering feedback loops. EUREMA provides a domain-specific modeling language to specify and an interpreter to execute feedback loops. The language allows developers to freely design a feedback loop concerning the activities and runtime models (knowledge) as well as the number of feedback loops. It further supports structuring the feedback loops in the adaptation engine that follows a layered architectural style. Thus, EUREMA makes the feedback loops explicit in the design and enables developers to reason about design decisions. To address the interplay of runtime models, we propose the concept of a runtime megamodel, which is a runtime model that contains other runtime models as well as activities (e.g., MAPE) working on the contained models. This concept is the underlying principle of EUREMA. The resulting EUREMA (mega)models are kept alive at runtime and they are directly executed by the EUREMA interpreter to run the feedback loops. Interpretation provides the flexibility to dynamically adapt a feedback loop. In this context, EUREMA supports engineering self-adaptive software in which feedback loops run independently or in a coordinated fashion within the same layer as well as on top of each other in different layers of the adaptation engine. Moreover, we consider preliminary means to evolve self-adaptive software by providing a maintenance interface to the adaptation engine. This thesis discusses in detail EUREMA by applying it to different scenarios such as single, multiple, and stacked feedback loops for self-repairing and self-optimizing the mRUBiS application. Moreover, it investigates the design and expressiveness of EUREMA, reports on experiments with a running system (mRUBiS) and with alternative solutions, and assesses EUREMA with respect to quality attributes such as performance and scalability. The conducted evaluation provides evidence that EUREMA as an integrated and open MDE approach for engineering self-adaptive software seamlessly integrates the development and runtime environments using the same formalism to specify and execute feedback loops, supports the dynamic adaptation of feedback loops in layered architectures, and achieves an efficient execution of feedback loops by leveraging incrementality.}, language = {en} }