@article{AlnoorTiberiusAtiyahetal.2022, author = {Alnoor, Alhamzah and Tiberius, Victor and Atiyah, Abbas Gatea and Khaw, Khai Wah and Yin, Teh Sin and Chew, XinYing and Abbas, Sammar}, title = {How positive and negative electronic word of mouth (eWOM) affects customers' intention to use social commerce?}, series = {International journal of human computer interaction}, journal = {International journal of human computer interaction}, publisher = {Taylor \& Francis}, address = {New York}, issn = {1044-7318}, doi = {10.1080/10447318.2022.2125610}, pages = {1 -- 30}, year = {2022}, abstract = {Advances in Web 2.0 technologies have led to the widespread assimilation of electronic commerce platforms as an innovative shopping method and an alternative to traditional shopping. However, due to pro-technology bias, scholars focus more on adopting technology, and slightly less attention has been given to the impact of electronic word of mouth (eWOM) on customers' intention to use social commerce. This study addresses the gap by examining the intention through exploring the effect of eWOM on males' and females' intentions and identifying the mediation of perceived crowding. To this end, we adopted a dual-stage multi-group structural equation modeling and artificial neural network (SEM-ANN) approach. We successfully extended the eWOM concept by integrating negative and positive factors and perceived crowding. The results reveal the causal and non-compensatory relationships between the constructs. The variables supported by the SEM analysis are adopted as the ANN model's input neurons. According to the natural significance obtained from the ANN approach, males' intentions to accept social commerce are related mainly to helping the company, followed by core functionalities. In contrast, females are highly influenced by technical aspects and mishandling. The ANN model predicts customers' intentions to use social commerce with an accuracy of 97\%. We discuss the theoretical and practical implications of increasing customers' intention toward social commerce channels among consumers based on our findings.}, language = {en} } @article{BenderKoerppen2022, author = {Bender, Benedict and K{\"o}rppen, Tim}, title = {Integriert statt isoliert}, series = {Digital business : cloud}, volume = {26}, journal = {Digital business : cloud}, number = {1}, publisher = {WIN-Verlag GmbH \& Co. KG}, address = {Vaterstetten}, issn = {2510-344X}, pages = {26 -- 27}, year = {2022}, abstract = {Dass Daten und Analysen Innovationstreiber sind und nicht mehr nur einen Hygienefaktor darstellen, haben viele Unternehmen erkannt. Um Potenziale zu heben, m{\"u}ssen Daten zielf{\"u}hrend integriert werden. Komplexe Systemlandschaften und isolierte Datenbest{\"a}nde erschweren dies. Technologien f{\"u}r die erfolgreiche Umsetzung von datengetriebenem Management m{\"u}ssen richtig eingesetzt werden.}, language = {de} } @article{BenlianWienerCrametal.2022, author = {Benlian, Alexander and Wiener, Martin and Cram, W. Alec and Krasnova, Hanna and Maedche, Alexander and Mohlmann, Mareike and Recker, Jan and Remus, Ulrich}, title = {Algorithmic management}, series = {Business and information systems engineering}, volume = {64}, journal = {Business and information systems engineering}, number = {6}, publisher = {Springer Gabler}, address = {Wiesbaden}, issn = {2363-7005}, doi = {10.1007/s12599-022-00764-w}, pages = {825 -- 839}, year = {2022}, language = {en} } @article{BlaesiusFriedrichLischeidetal.2022, author = {Bl{\"a}sius, Thomas and Friedrich, Tobias and Lischeid, Julius and Meeks, Kitty and Schirneck, Friedrich Martin}, title = {Efficiently enumerating hitting sets of hypergraphs arising in data profiling}, series = {Journal of computer and system sciences : JCSS}, volume = {124}, journal = {Journal of computer and system sciences : JCSS}, publisher = {Elsevier}, address = {San Diego}, issn = {0022-0000}, doi = {10.1016/j.jcss.2021.10.002}, pages = {192 -- 213}, year = {2022}, abstract = {The transversal hypergraph problem asks to enumerate the minimal hitting sets of a hypergraph. If the solutions have bounded size, Eiter and Gottlob [SICOMP'95] gave an algorithm running in output-polynomial time, but whose space requirement also scales with the output. We improve this to polynomial delay and space. Central to our approach is the extension problem, deciding for a set X of vertices whether it is contained in any minimal hitting set. We show that this is one of the first natural problems to be W[3]-complete. We give an algorithm for the extension problem running in time O(m(vertical bar X vertical bar+1) n) and prove a SETH-lower bound showing that this is close to optimal. We apply our enumeration method to the discovery problem of minimal unique column combinations from data profiling. Our empirical evaluation suggests that the algorithm outperforms its worst-case guarantees on hypergraphs stemming from real-world databases.}, language = {en} } @article{BonifatiMiorNaumannetal.2022, author = {Bonifati, Angela and Mior, Michael J. and Naumann, Felix and Noack, Nele Sina}, title = {How inclusive are we?}, series = {SIGMOD record / Association for Computing Machinery, Special Interest Group on Management of Data}, volume = {50}, journal = {SIGMOD record / Association for Computing Machinery, Special Interest Group on Management of Data}, number = {4}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0163-5808}, doi = {10.1145/3516431.3516438}, pages = {30 -- 35}, year = {2022}, abstract = {ACM SIGMOD, VLDB and other database organizations have committed to fostering an inclusive and diverse community, as do many other scientific organizations. Recently, different measures have been taken to advance these goals, especially for underrepresented groups. One possible measure is double-blind reviewing, which aims to hide gender, ethnicity, and other properties of the authors.
We report the preliminary results of a gender diversity analysis of publications of the database community across several peer-reviewed venues, and also compare women's authorship percentages in both single-blind and double-blind venues along the years. We also obtained a cross comparison of the obtained results in data management with other relevant areas in Computer Science.}, language = {en} } @article{ChenLangeAndjelkovicetal.2022, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Marko and Simevski, Aleksandar and Lu, Li and Krstić, Miloš}, title = {Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning}, series = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, volume = {10}, journal = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, number = {2}, publisher = {Institute of Electrical and Electronics Engineers}, address = {[New York, NY]}, issn = {2168-6750}, doi = {10.1109/TETC.2022.3147376}, pages = {564 -- 580}, year = {2022}, abstract = {The intensity of cosmic radiation may differ over five orders of magnitude within a few hours or days during the Solar Particle Events (SPEs), thus increasing for several orders of magnitude the probability of Single Event Upsets (SEUs) in space-borne electronic systems. Therefore, it is vital to enable the early detection of the SEU rate changes in order to ensure timely activation of dynamic radiation hardening measures. In this paper, an embedded approach for the prediction of SPEs and SRAM SEU rate is presented. The proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine learning model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings the following benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing the hardware and power overhead, (2) Prediction of SRAM SEU rate one hour in advance, with the fine-grained hourly tracking of SEU variations during SPEs as well as under normal conditions, (3) Online optimization of the prediction model for enhancing the prediction accuracy during run-time, (4) Negligible cost of hardware accelerator design for the implementation of selected machine learning model and online learning algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system employed in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of high radiation levels.}, language = {en} } @article{GevayRablBressetal.2022, author = {G{\´e}vay, G{\´a}bor E. and Rabl, Tilmann and Breß, Sebastian and Madai-Tahy, Lor{\´a}nd and Quian{\´e}-Ruiz, Jorge-Arnulfo and Markl, Volker}, title = {Imperative or functional control flow handling}, series = {SIGMOD record / Association for Computing Machinery, Special Interest Group on Management of Data}, volume = {51}, journal = {SIGMOD record / Association for Computing Machinery, Special Interest Group on Management of Data}, number = {1}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0163-5808}, doi = {10.1145/3542700.3542715}, pages = {60 -- 67}, year = {2022}, abstract = {Modern data analysis tasks often involve control flow statements, such as the iterations in PageRank and K-means. To achieve scalability, developers usually implement these tasks in distributed dataflow systems, such as Spark and Flink. Designers of such systems have to choose between providing imperative or functional control flow constructs to users. Imperative constructs are easier to use, but functional constructs are easier to compile to an efficient dataflow job. We propose Mitos, a system where control flow is both easy to use and efficient. Mitos relies on an intermediate representation based on the static single assignment form. This allows us to abstract away from specific control flow constructs and treat any imperative control flow uniformly both when building the dataflow job and when coordinating the distributed execution.}, language = {en} } @inproceedings{HagemannAbramova2022, author = {Hagemann, Linus and Abramova, Olga}, title = {Crafting audience engagement in social media conversations}, series = {Proceedings of the 55th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 55th Hawaii International Conference on System Sciences}, publisher = {HICSS Conference Office University of Hawaii at Manoa}, address = {Honolulu}, isbn = {978-0-9981331-5-7}, pages = {3222 -- 3231}, year = {2022}, abstract = {Observing inconsistent results in prior studies, this paper applies the elaboration likelihood model to investigate the impact of affective and cognitive cues embedded in social media messages on audience engagement during a political event. Leveraging a rich dataset in the context of the 2020 U.S. presidential elections containing more than 3 million tweets, we found the prominence of both cue types. For the overall sample, positivity and sentiment are negatively related to engagement. In contrast, the post-hoc sub-sample analysis of tweets from famous users shows that emotionally charged content is more engaging. The role of sentiment decreases when the number of followers grows and ultimately becomes insignificant for Twitter participants with a vast number of followers. Prosocial orientation ("we-talk") is consistently associated with more likes, comments, and retweets in the overall sample and sub-samples.}, language = {en} } @article{IhdePufahlVoelkeretal.2022, author = {Ihde, Sven and Pufahl, Luise and V{\"o}lker, Maximilian and Goel, Asvin and Weske, Mathias}, title = {A framework for modeling and executing task}, series = {Computing : archives for informatics and numerical computation}, volume = {104}, journal = {Computing : archives for informatics and numerical computation}, publisher = {Springer}, address = {Wien}, issn = {0010-485X}, doi = {10.1007/s00607-022-01093-2}, pages = {2405 -- 2429}, year = {2022}, abstract = {As resources are valuable assets, organizations have to decide which resources to allocate to business process tasks in a way that the process is executed not only effectively but also efficiently. Traditional role-based resource allocation leads to effective process executions, since each task is performed by a resource that has the required skills and competencies to do so. However, the resulting allocations are typically not as efficient as they could be, since optimization techniques have yet to find their way in traditional business process management scenarios. On the other hand, operations research provides a rich set of analytical methods for supporting problem-specific decisions on resource allocation. This paper provides a novel framework for creating transparency on existing tasks and resources, supporting individualized allocations for each activity in a process, and the possibility to integrate problem-specific analytical methods of the operations research domain. To validate the framework, the paper reports on the design and prototypical implementation of a software architecture, which extends a traditional process engine with a dedicated resource management component. This component allows us to define specific resource allocation problems at design time, and it also facilitates optimized resource allocation at run time. The framework is evaluated using a real-world parcel delivery process. The evaluation shows that the quality of the allocation results increase significantly with a technique from operations research in contrast to the traditional applied rule-based approach.}, language = {en} } @article{KayaFreitag2022, author = {Kaya, Adem and Freitag, Melina A.}, title = {Conditioning analysis for discrete Helmholtz problems}, series = {Computers and mathematics with applications : an international journal}, volume = {118}, journal = {Computers and mathematics with applications : an international journal}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0898-1221}, doi = {10.1016/j.camwa.2022.05.016}, pages = {171 -- 182}, year = {2022}, abstract = {In this paper, we examine conditioning of the discretization of the Helmholtz problem. Although the discrete Helmholtz problem has been studied from different perspectives, to the best of our knowledge, there is no conditioning analysis for it. We aim to fill this gap in the literature. We propose a novel method in 1D to observe the near-zero eigenvalues of a symmetric indefinite matrix. Standard classification of ill-conditioning based on the matrix condition number is not true for the discrete Helmholtz problem. We relate the ill-conditioning of the discretization of the Helmholtz problem with the condition number of the matrix. We carry out analytical conditioning analysis in 1D and extend our observations to 2D with numerical observations. We examine several discretizations. We find different regions in which the condition number of the problem shows different characteristics. We also explain the general behavior of the solutions in these regions.}, language = {en} }