@book{CalmezHesseSiegmundetal.2013, author = {Calmez, Conrad and Hesse, Hubert and Siegmund, Benjamin and Stamm, Sebastian and Thomschke, Astrid and Hirschfeld, Robert and Ingalls, Dan and Lincke, Jens}, title = {Explorative authoring of Active Web content in a mobile environment}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-232-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64054}, publisher = {Universit{\"a}t Potsdam}, pages = {132}, year = {2013}, abstract = {Developing rich Web applications can be a complex job - especially when it comes to mobile device support. Web-based environments such as Lively Webwerkstatt can help developers implement such applications by making the development process more direct and interactive. Further the process of developing software is collaborative which creates the need that the development environment offers collaboration facilities. This report describes extensions of the webbased development environment Lively Webwerkstatt such that it can be used in a mobile environment. The extensions are collaboration mechanisms, user interface adaptations but as well event processing and performance measuring on mobile devices.}, language = {en} } @book{DraisbachNaumannSzottetal.2012, author = {Draisbach, Uwe and Naumann, Felix and Szott, Sascha and Wonneberg, Oliver}, title = {Adaptive windows for duplicate detection}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-143-1}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53007}, publisher = {Universit{\"a}t Potsdam}, pages = {41}, year = {2012}, abstract = {Duplicate detection is the task of identifying all groups of records within a data set that represent the same real-world entity, respectively. This task is difficult, because (i) representations might differ slightly, so some similarity measure must be defined to compare pairs of records and (ii) data sets might have a high volume making a pair-wise comparison of all records infeasible. To tackle the second problem, many algorithms have been suggested that partition the data set and compare all record pairs only within each partition. One well-known such approach is the Sorted Neighborhood Method (SNM), which sorts the data according to some key and then advances a window over the data comparing only records that appear within the same window. We propose several variations of SNM that have in common a varying window size and advancement. The general intuition of such adaptive windows is that there might be regions of high similarity suggesting a larger window size and regions of lower similarity suggesting a smaller window size. We propose and thoroughly evaluate several adaption strategies, some of which are provably better than the original SNM in terms of efficiency (same results with fewer comparisons).}, language = {en} } @book{DyckGiese2017, author = {Dyck, Johannes and Giese, Holger}, title = {k-Inductive invariant checking for graph transformation systems}, number = {119}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-406-7}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397044}, publisher = {Universit{\"a}t Potsdam}, pages = {45}, year = {2017}, abstract = {While offering significant expressive power, graph transformation systems often come with rather limited capabilities for automated analysis, particularly if systems with many possible initial graphs and large or infinite state spaces are concerned. One approach that tries to overcome these limitations is inductive invariant checking. However, the verification of inductive invariants often requires extensive knowledge about the system in question and faces the approach-inherent challenges of locality and lack of context. To address that, this report discusses k-inductive invariant checking for graph transformation systems as a generalization of inductive invariants. The additional context acquired by taking multiple (k) steps into account is the key difference to inductive invariant checking and is often enough to establish the desired invariants without requiring the iterative development of additional properties. To analyze possibly infinite systems in a finite fashion, we introduce a symbolic encoding for transformation traces using a restricted form of nested application conditions. As its central contribution, this report then presents a formal approach and algorithm to verify graph constraints as k-inductive invariants. We prove the approach's correctness and demonstrate its applicability by means of several examples evaluated with a prototypical implementation of our algorithm.}, language = {en} } @book{DyckGiese2015, author = {Dyck, Johannes and Giese, Holger}, title = {Inductive invariant checking with partial negative application conditions}, number = {98}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-333-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77748}, publisher = {Universit{\"a}t Potsdam}, pages = {43}, year = {2015}, abstract = {Graph transformation systems are a powerful formal model to capture model transformations or systems with infinite state space, among others. However, this expressive power comes at the cost of rather limited automated analysis capabilities. The general case of unbounded many initial graphs or infinite state spaces is only supported by approaches with rather limited scalability or expressiveness. In this report we improve an existing approach for the automated verification of inductive invariants for graph transformation systems. By employing partial negative application conditions to represent and check many alternative conditions in a more compact manner, we can check examples with rules and constraints of substantially higher complexity. We also substantially extend the expressive power by supporting more complex negative application conditions and provide higher accuracy by employing advanced implication checks. The improvements are evaluated and compared with another applicable tool by considering three case studies.}, language = {en} } @book{DyckGieseLambers2017, author = {Dyck, Johannes and Giese, Holger and Lambers, Leen}, title = {Automatic verification of behavior preservation at the transformation level for relational model transformation}, number = {112}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-391-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100279}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 112}, year = {2017}, abstract = {The correctness of model transformations is a crucial element for model-driven engineering of high quality software. In particular, behavior preservation is the most important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques either show that specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence or refinement between source and target model of the transformation. Both kinds of behavior preservation verification goals have been presented with automatic tool support for the instance level, i.e. for a given source and target model specified by the model transformation. However, up until now there is no automatic verification approach available at the transformation level, i.e. for all source and target models specified by the model transformation. In this report, we extend our results presented in [27] and outline a new sophisticated approach for the automatic verification of behavior preservation captured by bisimulation resp. simulation for model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we show that the behavior preservation problem can be reduced to invariant checking for graph transformation and that the resulting checking problem can be addressed by our own invariant checker even for a complex example where a sequence chart is transformed into communicating automata. We further discuss today's limitations of invariant checking for graph transformation and motivate further lines of future work in this direction.}, language = {en} } @book{DuerschReinMattisetal.2022, author = {D{\"u}rsch, Falco and Rein, Patrick and Mattis, Toni and Hirschfeld, Robert}, title = {Learning from failure}, number = {145}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-528-6}, issn = {1613-5652}, doi = {10.25932/publishup-53755}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537554}, publisher = {Universit{\"a}t Potsdam}, pages = {87}, year = {2022}, abstract = {Regression testing is a widespread practice in today's software industry to ensure software product quality. Developers derive a set of test cases, and execute them frequently to ensure that their change did not adversely affect existing functionality. As the software product and its test suite grow, the time to feedback during regression test sessions increases, and impedes programmer productivity: developers wait longer for tests to complete, and delays in fault detection render fault removal increasingly difficult. Test case prioritization addresses the problem of long feedback loops by reordering test cases, such that test cases of high failure probability run first, and test case failures become actionable early in the testing process. We ask, given test execution schedules reconstructed from publicly available data, to which extent can their fault detection efficiency improved, and which technique yields the most efficient test schedules with respect to APFD? To this end, we recover regression 6200 test sessions from the build log files of Travis CI, a popular continuous integration service, and gather 62000 accompanying changelists. We evaluate the efficiency of current test schedules, and examine the prioritization results of state-of-the-art lightweight, history-based heuristics. We propose and evaluate a novel set of prioritization algorithms, which connect software changes and test failures in a matrix-like data structure. Our studies indicate that the optimization potential is substantial, because the existing test plans score only 30\% APFD. The predictive power of past test failures proves to be outstanding: simple heuristics, such as repeating tests with failures in recent sessions, result in efficiency scores of 95\% APFD. The best-performing matrix-based heuristic achieves a similar score of 92.5\% APFD. In contrast to prior approaches, we argue that matrix-based techniques are useful beyond the scope of effective prioritization, and enable a number of use cases involving software maintenance. We validate our findings from continuous integration processes by extending a continuous testing tool within development environments with means of test prioritization, and pose further research questions. We think that our findings are suited to propel adoption of (continuous) testing practices, and that programmers' toolboxes should contain test prioritization as an existential productivity tool.}, language = {en} } @book{EichenrothReinHirschfeld2022, author = {Eichenroth, Friedrich and Rein, Patrick and Hirschfeld, Robert}, title = {Fast packrat parsing in a live programming environment}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {135}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-503-3}, issn = {1613-5652}, doi = {10.25932/publishup-49124}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491242}, publisher = {Universit{\"a}t Potsdam}, pages = {79}, year = {2022}, abstract = {Language developers who design domain-specific languages or new language features need a way to make fast changes to language definitions. Those fast changes require immediate feedback. Also, it should be possible to parse the developed languages quickly to handle extensive sets of code. Parsing expression grammars provides an easy to understand method for language definitions. Packrat parsing is a method to parse grammars of this kind, but this method is unable to handle left-recursion properly. Existing solutions either partially rewrite left-recursive rules and partly forbid them, or use complex extensions to packrat parsing that are hard to understand and cost-intensive. We investigated methods to make parsing as fast as possible, using easy to follow algorithms while not losing the ability to make fast changes to grammars. We focused our efforts on two approaches. One is to start from an existing technique for limited left-recursion rewriting and enhance it to work for general left-recursive grammars. The second approach is to design a grammar compilation process to find left-recursion before parsing, and in this way, reduce computational costs wherever possible and generate ready to use parser classes. Rewriting parsing expression grammars is a task that, if done in a general way, unveils a large number of cases such that any rewriting algorithm surpasses the complexity of other left-recursive parsing algorithms. Lookahead operators introduce this complexity. However, most languages have only little portions that are left-recursive and in virtually all cases, have no indirect or hidden left-recursion. This means that the distinction of left-recursive parts of grammars from components that are non-left-recursive holds great improvement potential for existing parsers. In this report, we list all the required steps for grammar rewriting to handle left-recursion, including grammar analysis, grammar rewriting itself, and syntax tree restructuring. Also, we describe the implementation of a parsing expression grammar framework in Squeak/Smalltalk and the possible interactions with the already existing parser Ohm/S. We quantitatively benchmarked this framework directing our focus on parsing time and the ability to use it in a live programming context. Compared with Ohm, we achieved massive parsing time improvements while preserving the ability to use our parser it as a live programming tool. The work is essential because, for one, we outlined the difficulties and complexity that come with grammar rewriting. Also, we removed the existing limitations that came with left-recursion by eliminating them before parsing.}, language = {en} } @book{EidSabbaghHeweltWeske2013, author = {Eid-Sabbagh, Rami-Habib and Hewelt, Marcin and Weske, Mathias}, title = {Business process architectures with multiplicities : transformation and correctness}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-257-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66780}, publisher = {Universit{\"a}t Potsdam}, pages = {18}, year = {2013}, abstract = {Business processes are instrumental to manage work in organisations. To study the interdependencies between business processes, Business Process Architectures have been introduced. These express trigger and message ow relations between business processes. When we investigate real world Business Process Architectures, we find complex interdependencies, involving multiple process instances. These aspects have not been studied in detail so far, especially concerning correctness properties. In this paper, we propose a modular transformation of BPAs to open nets for the analysis of behavior involving multiple business processes with multiplicities. For this purpose we introduce intermediary nets to portray semantics of multiplicity specifications. We evaluate our approach on a use case from the public sector.}, language = {en} } @book{FeinbubeRichterGerstenbergetal.2016, author = {Feinbube, Lena and Richter, Daniel and Gerstenberg, Sebastian and Siegler, Patrick and Haller, Angelo and Polze, Andreas}, title = {Software-Fehlerinjektion}, number = {109}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-386-2}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97435}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 47}, year = {2016}, abstract = {Fehlerinjektion ist ein essentielles Werkzeug, um die Fehlertoleranz komplexer Softwaresysteme experimentell zu evaluieren. Wir berichten {\"u}ber das Seminar zum Thema Software-Fehlerinjektion, das am Fachgebiet f{\"u}r Betriebssysteme und Middleware am Hasso-Plattner-Institut der Universit{\"a}t Potsdam im Sommersemester 2015 stattfand. In dem Seminar ging es darum, verschiedene Fehlerinjektionsans{\"a}tze und -werkzeuge anzuwenden und hinsichtlich ihrer Anwendbarkeit in verschiedenen Szenarien zu bewerten. In diesem Bericht werden die studierten Ans{\"a}tze vorgestellt und verglichen.}, language = {de} } @book{FelgentreffBorningHirschfeld2013, author = {Felgentreff, Tim and Borning, Alan and Hirschfeld, Robert}, title = {Babelsberg : specifying and solving constraints on object behavior}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-265-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67296}, publisher = {Universit{\"a}t Potsdam}, pages = {53}, year = {2013}, abstract = {Constraints allow developers to specify desired properties of systems in a number of domains, and have those properties be maintained automatically. This results in compact, declarative code, avoiding scattered code to check and imperatively re-satisfy invariants. Despite these advantages, constraint programming is not yet widespread, with standard imperative programming still the norm. There is a long history of research on integrating constraint programming with the imperative paradigm. However, this integration typically does not unify the constructs for encapsulation and abstraction from both paradigms. This impedes re-use of modules, as client code written in one paradigm can only use modules written to support that paradigm. Modules require redundant definitions if they are to be used in both paradigms. We present a language - Babelsberg - that unifies the constructs for en- capsulation and abstraction by using only object-oriented method definitions for both declarative and imperative code. Our prototype - Babelsberg/R - is an extension to Ruby, and continues to support Ruby's object-oriented se- mantics. It allows programmers to add constraints to existing Ruby programs in incremental steps by placing them on the results of normal object-oriented message sends. It is implemented by modifying a state-of-the-art Ruby virtual machine. The performance of standard object-oriented code without con- straints is only modestly impacted, with typically less than 10\% overhead compared with the unmodified virtual machine. Furthermore, our architec- ture for adding multiple constraint solvers allows Babelsberg to deal with constraints in a variety of domains. We argue that our approach provides a useful step toward making con- straint solving a generic tool for object-oriented programmers. We also provide example applications, written in our Ruby-based implementation, which use constraints in a variety of application domains, including interactive graphics, circuit simulations, data streaming with both hard and soft constraints on performance, and configuration file Management.}, language = {en} } @book{FelgentreffHirschfeldMillsteinetal.2015, author = {Felgentreff, Tim and Hirschfeld, Robert and Millstein, Todd and Borning, Alan}, title = {Babelsberg/RML}, number = {103}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-348-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83826}, publisher = {Universit{\"a}t Potsdam}, pages = {68}, year = {2015}, abstract = {New programming language designs are often evaluated on concrete implementations. However, in order to draw conclusions about the language design from the evaluation of concrete programming languages, these implementations need to be verified against the formalism of the design. To that end, we also have to ensure that the design actually meets its stated goals. A useful tool for the latter has been to create an executable semantics from a formalism that can execute a test suite of examples. However, this mechanism so far did not allow to verify an implementation against the design. Babelsberg is a new design for a family of object-constraint languages. Recently, we have developed a formal semantics to clarify some issues in the design of those languages. Supplementing this work, we report here on how this formalism is turned into an executable operational semantics using the RML system. Furthermore, we show how we extended the executable semantics to create a framework that can generate test suites for the concrete Babelsberg implementations that provide traceability from the design to the language. Finally, we discuss how these test suites helped us find and correct mistakes in the Babelsberg implementation for JavaScript.}, language = {en} } @book{FlottererMaximovaSchneideretal.2022, author = {Flotterer, Boris and Maximova, Maria and Schneider, Sven and Dyck, Johannes and Z{\"o}llner, Christian and Giese, Holger and H{\´e}ly, Christelle and Gaucherel, C{\´e}dric}, title = {Modeling and Formal Analysis of Meta-Ecosystems with Dynamic Structure using Graph Transformation}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {147}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-533-0}, issn = {1613-5652}, doi = {10.25932/publishup-54764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547643}, publisher = {Universit{\"a}t Potsdam}, pages = {47}, year = {2022}, abstract = {The dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the space structure dynamics and ecological dynamics of the meta-ecosystem shows two main structural stabilities: the first one based on grassland-savanna-woodland transitions and the second one based on grassland-desert transitions. The transition between these two structural stabilities is driven by high-intensity fires affecting the tree components. In the third GT model, the GT rule for savanna regeneration induces desertification and therefore a collapse of the meta-ecosystem. We believe that GT models provide a complementary avenue to that of existing approaches to rigorously study ecological phenomena.}, language = {en} } @book{Freischlad2009, author = {Freischlad, Stefan}, title = {Entwicklung und Erprobung des Didaktischen Systems Internetworking im Informatikunterricht}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-058-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41851}, publisher = {Universit{\"a}t Potsdam}, pages = {XIV, 405}, year = {2009}, abstract = {Internetbasierte Informatiksysteme beeinflussen in steigendem Maße Situationen in unterschiedlichen Lebensbereichen. Kompetenzen zur Verwendung von Internetanwendungen und -diensten m{\"u}ssen explizit erworben werden, weil damit ein notwendiger Einblick in nicht beobachtbare Abl{\"a}ufe und nicht offen sichtbare Strukturen verbunden ist. Bisher gibt es Vorschl{\"a}ge f{\"u}r die Gestaltung schulischer Lehr-Lernprozesse zu ausgew{\"a}hlten Teilaspekten des Internets. Es fehlt eine systematische Analyse des Bildungsbedarfs und ein daraus resultierendes Unterrichtsmodell. In dieser Arbeit wird ein Gesamtkonzept f{\"u}r den Informatikunterricht in der Sekundarstufe II vorgestellt, das zu zielgerichteter und verantwortungsvoller Anwendung des Internets beitr{\"a}gt. Die vorliegende Arbeit umfasst den Prozess von der Analyse erforderlicher Kompetenzen bis zur Realisierung von Lehr-Lernprozessen im Informatikunterricht in der Sekundarstufe II. Es werden der Beitrag der Informatik zu identifizierten Kompetenzen untersucht und Bildungsanforderungen bestimmt. Bildungsempfehlungen und Forschungsergebnisse zu erfolgreichen Unterrichtseinheiten werden im Hinblick auf die Bildungsziele analysiert. Der Informatikunterricht unterst{\"u}tzt die Kompetenzentwicklung zu internetbasierten digitalen Medien. Es wird die Entwicklung eines Unterrichtsmodells zu Internetworking beschrieben. Dazu wird der Ansatz der Didaktischen Systeme untersucht, weiter entwickelt und auf den Bereich Internetworking {\"u}bertragen. Der theoretische Ansatz wird dazu in vier Unterrichtsprojekten zu Internetworking in der Praxis realisiert. Beziehungen zwischen Fachkonzepten zu Internetworking werden untersucht und durch Wissensstrukturen zur Planung von Unterrichtsprojekten eingesetzt und in der Praxis erprobt. Die Beschreibung von Lernaktivit{\"a}ten erfolgt auf der Basis von Aufgabenklassen, die das notwendige Wissen zur Bearbeitung einer Aufgabenstellung repr{\"a}sentieren. Auf der Grundlage des Ablaufs der Aufgabenbearbeitung werden Eigenschaften von Aufgaben beschrieben und zu deren Gestaltung nutzbar gemacht. Bisher nicht durchf{\"u}hrbare T{\"a}tigkeiten im Unterricht werden durch die Entwicklung der Lernsoftware Filius erm{\"o}glicht. Die Reduktion der komplexen Wirklichkeit durch Simulation realer internetbasierter Informatiksysteme und die Auswahl geeigneter Sichten auf den Untersuchungsgegenstand werden mit Ergebnissen der Informatikdidaktik begr{\"u}ndet. Unterrichtsprojekte zu den Zielen werden durchgef{\"u}hrt, um Lehr-Lernprozesse zu erkunden und das entwickelte Didaktische System zu erproben. Ausgehend von der theoretischen Fundierung erfolgt die praktische Realisierung von Lehr-Lernprozessen. Zur Erprobung im Informatikunterricht der Sekundarstufe II in Nordrhein-Westfalen werden Minimalziele aufgrund der Lehrvorgaben bestimmt. Die methodische Gestaltung in der Erprobung erfolgt unter Ber{\"u}cksichtigung der Vorgaben f{\"u}r den Informatikunterricht und allgemeinen Anforderungen der Fachdidaktik. Handlungsorientierte Unterrichtsmittel werden ausgew{\"a}hlt und in der Praxis zur Untersuchung der Lehr-Lernprozesse verwendet. Im Unterricht identifizierte Lernschwierigkeiten f{\"u}hren zur Modifikation der Wissensstrukturen und werden im Entwicklungsprozess von Filius ber{\"u}cksichtigt. Die Erkenntnisse aus Unterrichtsprojekten werden genutzt, um zu bestimmen, zu welchen Aufgabenklassen weitere Aufgaben erforderlich sind und inwieweit das aus den identifizierten Merkmalen abgeleitete Vorgehen zur Entwicklung niveaubestimmender Aufgaben genutzt werden kann. Die Erprobungen best{\"a}tigen die Tragf{\"a}higkeit des Didaktischen Systems Internetworking und leisten mit der Implementierung in der Praxis einen Beitrag zur Untersuchung von Kompetenzentwicklung im Informatikunterricht. Mit dem Didaktischen System Internetworking wird ein theoretisch fundiertes und empirisch erprobtes Unterrichtsmodell zur Entwicklung von Kompetenzen zur Einrichtung und Anwendung internetbasierter Informatiksysteme beschrieben.}, language = {de} } @book{FreundRaetschHradilaketal.2022, author = {Freund, Rieke and R{\"a}tsch, Jan Philip and Hradilak, Franziska and Vidic, Benedikt and Heß, Oliver and Lißner, Nils and W{\"o}lert, Hendrik and Lincke, Jens and Beckmann, Tom and Hirschfeld, Robert}, title = {Implementing a crowd-sourced picture archive for Bad Harzburg}, number = {149}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-545-3}, issn = {1613-5652}, doi = {10.25932/publishup-56029}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560291}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 191}, year = {2022}, abstract = {Pictures are a medium that helps make the past tangible and preserve memories. Without context, they are not able to do so. Pictures are brought to life by their associated stories. However, the older pictures become, the fewer contemporary witnesses can tell these stories. Especially for large, analog picture archives, knowledge and memories are spread over many people. This creates several challenges: First, the pictures must be digitized to save them from decaying and make them available to the public. Since a simple listing of all the pictures is confusing, the pictures should be structured accessibly. Second, known information that makes the stories vivid needs to be added to the pictures. Users should get the opportunity to contribute their knowledge and memories. To make this usable for all interested parties, even for older, less technophile generations, the interface should be intuitive and error-tolerant. The resulting requirements are not covered in their entirety by any existing software solution without losing the intuitive interface or the scalability of the system. Therefore, we have developed our digital picture archive within the scope of a bachelor project in cooperation with the Bad Harzburg-Stiftung. For the implementation of this web application, we use the UI framework React in the frontend, which communicates via a GraphQL interface with the Content Management System Strapi in the backend. The use of this system enables our project partner to create an efficient process from scanning analog pictures to presenting them to visitors in an organized and annotated way. To customize the solution for both picture delivery and information contribution for our target group, we designed prototypes and evaluated them with people from Bad Harzburg. This helped us gain valuable insights into our system's usability and future challenges as well as requirements. Our web application is already being used daily by our project partner. During the project, we still came up with numerous ideas for additional features to further support the exchange of knowledge.}, language = {en} } @book{GarusSawahnWankeetal.2023, author = {Garus, Marcel and Sawahn, Rohan and Wanke, Jonas and Tiedt, Clemens and Granzow, Clara and Kuffner, Tim and Rosenbaum, Jannis and Hagemann, Linus and Wollnik, Tom and Woth, Lorenz and Auringer, Felix and Kantusch, Tobias and Roth, Felix and Hanff, Konrad and Schilli, Niklas and Seibold, Leonard and Lindner, Marc Fabian and Raschack, Selina}, title = {Operating systems II - student projects}, number = {142}, editor = {Grapentin, Andreas and Tiedt, Clemens and Polze, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-524-8}, issn = {1613-5652}, doi = {10.25932/publishup-52636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526363}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 114}, year = {2023}, abstract = {This technical report presents the results of student projects which were prepared during the lecture "Operating Systems II" offered by the "Operating Systems and Middleware" group at HPI in the Summer term of 2020. The lecture covered ad- vanced aspects of operating system implementation and architecture on topics such as Virtualization, File Systems and Input/Output Systems. In addition to attending the lecture, the participating students were encouraged to gather practical experience by completing a project on a closely related topic over the course of the semester. The results of 10 selected exceptional projects are covered in this report. The students have completed hands-on projects on the topics of Operating System Design Concepts and Implementation, Hardware/Software Co-Design, Reverse Engineering, Quantum Computing, Static Source-Code Analysis, Operating Systems History, Application Binary Formats and more. It should be recognized that over the course of the semester all of these projects have achieved outstanding results which went far beyond the scope and the expec- tations of the lecture, and we would like to thank all participating students for their commitment and their effort in completing their respective projects, as well as their work on compiling this report.}, language = {en} } @book{GayvoronskayaMeinelSchnjakin2018, author = {Gayvoronskaya, Tatiana and Meinel, Christoph and Schnjakin, Maxim}, title = {Blockchain}, number = {113}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-394-7}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103141}, publisher = {Universit{\"a}t Potsdam}, pages = {109}, year = {2018}, abstract = {Der Begriff Blockchain ist in letzter Zeit zu einem Schlagwort geworden, aber nur wenige wissen, was sich genau dahinter verbirgt. Laut einer Umfrage, die im ersten Quartal 2017 ver{\"o}ffentlicht wurde, ist der Begriff nur bei 35 Prozent der deutschen Mittelst{\"a}ndler bekannt. Dabei ist die Blockchain-Technologie durch ihre rasante Entwicklung und die globale Eroberung unterschiedlicher M{\"a}rkte f{\"u}r Massenmedien sehr interessant. So sehen viele die Blockchain-Technologie entweder als eine Allzweckwaffe, zu der aber nur wenige einen Zugang haben, oder als eine Hacker-Technologie f{\"u}r geheime Gesch{\"a}fte im Darknet. Dabei liegt die Innovation der Blockchain-Technologie in ihrer erfolgreichen Zusammensetzung bereits vorhandener Ans{\"a}tze: dezentrale Netzwerke, Kryptographie, Konsensfindungsmodelle. Durch das innovative Konzept wird ein Werte-Austausch in einem dezentralen System m{\"o}glich. Dabei wird kein Vertrauen zwischen dessen Knoten (z.B. Nutzer) vorausgesetzt. Mit dieser Studie m{\"o}chte das Hasso-Plattner-Institut den Lesern helfen, ihren eigenen Standpunkt zur Blockchain-Technologie zu finden und dabei dazwischen unterscheiden zu k{\"o}nnen, welche Eigenschaften wirklich innovativ und welche nichts weiter als ein Hype sind. Die Autoren der vorliegenden Arbeit analysieren positive und negative Eigenschaften, welche die Blockchain-Architektur pr{\"a}gen, und stellen m{\"o}gliche Anpassungs- und L{\"o}sungsvorschl{\"a}ge vor, die zu einem effizienten Einsatz der Technologie beitragen k{\"o}nnen. Jedem Unternehmen, bevor es sich f{\"u}r diese Technologie entscheidet, wird dabei empfohlen, f{\"u}r den geplanten Anwendungszweck zun{\"a}chst ein klares Ziel zu definieren, das mit einem angemessenen Kosten-Nutzen-Verh{\"a}ltnis angestrebt werden kann. Dabei sind sowohl die M{\"o}glichkeiten als auch die Grenzen der Blockchain-Technologie zu beachten. Die relevanten Schritte, die es in diesem Zusammenhang zu beachten gilt, fasst die Studie f{\"u}r die Leser {\"u}bersichtlich zusammen. Es wird ebenso auf akute Fragestellungen wie Skalierbarkeit der Blockchain, geeigneter Konsensalgorithmus und Sicherheit eingegangen, darunter verschiedene Arten m{\"o}glicher Angriffe und die entsprechenden Gegenmaßnahmen zu deren Abwehr. Neue Blockchains etwa laufen Gefahr, geringere Sicherheit zu bieten, da {\"A}nderungen an der bereits bestehenden Technologie zu Schutzl{\"u}cken und M{\"a}ngeln f{\"u}hren k{\"o}nnen. Nach Diskussion der innovativen Eigenschaften und Probleme der Blockchain-Technologie wird auf ihre Umsetzung eingegangen. Interessierten Unternehmen stehen viele Umsetzungsm{\"o}glichkeiten zur Verf{\"u}gung. Die zahlreichen Anwendungen haben entweder eine eigene Blockchain als Grundlage oder nutzen bereits bestehende und weitverbreitete Blockchain-Systeme. Zahlreiche Konsortien und Projekte bieten „Blockchain-as-a-Service" an und unterst{\"u}tzen andere Unternehmen beim Entwickeln, Testen und Bereitstellen von Anwendungen. Die Studie gibt einen detaillierten {\"U}berblick {\"u}ber zahlreiche relevante Einsatzbereiche und Projekte im Bereich der Blockchain-Technologie. Dadurch, dass sie noch relativ jung ist und sich schnell entwickelt, fehlen ihr noch einheitliche Standards, die Zusammenarbeit der verschiedenen Systeme erlauben und an die sich alle Entwickler halten k{\"o}nnen. Aktuell orientieren sich Entwickler an Bitcoin-, Ethereum- und Hyperledger-Systeme, diese dienen als Grundlage f{\"u}r viele weitere Blockchain-Anwendungen. Ziel ist, den Lesern einen klaren und umfassenden {\"U}berblick {\"u}ber die Blockchain-Technologie und deren M{\"o}glichkeiten zu vermitteln.}, language = {de} } @book{GellerHirschfeldBracha2010, author = {Geller, Felix and Hirschfeld, Robert and Bracha, Gilad}, title = {Pattern Matching for an object-oriented and dynamically typed programming language}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-065-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-43035}, publisher = {Universit{\"a}t Potsdam}, pages = {81}, year = {2010}, abstract = {Pattern matching is a well-established concept in the functional programming community. It provides the means for concisely identifying and destructuring values of interest. This enables a clean separation of data structures and respective functionality, as well as dispatching functionality based on more than a single value. Unfortunately, expressive pattern matching facilities are seldomly incorporated in present object-oriented programming languages. We present a seamless integration of pattern matching facilities in an object-oriented and dynamically typed programming language: Newspeak. We describe language extensions to improve the practicability and integrate our additions with the existing programming environment for Newspeak. This report is based on the first author's master's thesis.}, language = {en} } @book{GerkenUebernickeldePaula2022, author = {Gerken, Stefanie and Uebernickel, Falk and de Paula, Danielly}, title = {Design Thinking: a Global Study on Implementation Practices in Organizations}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-525-5}, doi = {10.25932/publishup-53466}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-534668}, publisher = {Universit{\"a}t Potsdam}, pages = {230}, year = {2022}, abstract = {These days design thinking is no longer a "new approach". Among practitioners, as well as academics, interest in the topic has gathered pace over the last two decades. However, opinions are divided over the longevity of the phenomenon: whether design thinking is merely "old wine in new bottles," a passing trend, or still evolving as it is being spread to an increasing number of organizations and industries. Despite its growing relevance and the diffusion of design thinking, knowledge on the actual status quo in organizations remains scarce. With a new study, the research team of Prof. Uebernickel and Stefanie Gerken investigates temporal developments and changes in design thinking practices in organizations over the past six years comparing the results of the 2015 "Parts without a whole" study with current practices and future developments. Companies of all sizes and from different parts of the world participated in the survey. The findings from qualitative interviews with experts, i.e., people who have years of knowledge with design thinking, were cross-checked with the results from an exploratory analysis of the survey data. This analysis uncovers significant variances and similarities in how design thinking is interpreted and applied in businesses.}, language = {en} } @book{GieseBecker2013, author = {Giese, Holger and Becker, Basil}, title = {Modeling and verifying dynamic evolving service-oriented architectures}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-246-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65112}, publisher = {Universit{\"a}t Potsdam}, pages = {97}, year = {2013}, abstract = {The service-oriented architecture supports the dynamic assembly and runtime reconfiguration of complex open IT landscapes by means of runtime binding of service contracts, launching of new components and termination of outdated ones. Furthermore, the evolution of these IT landscapes is not restricted to exchanging components with other ones using the same service contracts, as new services contracts can be added as well. However, current approaches for modeling and verification of service-oriented architectures do not support these important capabilities to their full extend.In this report we present an extension of the current OMG proposal for service modeling with UML - SoaML - which overcomes these limitations. It permits modeling services and their service contracts at different levels of abstraction, provides a formal semantics for all modeling concepts, and enables verifying critical properties. Our compositional and incremental verification approach allows for complex properties including communication parameters and time and covers besides the dynamic binding of service contracts and the replacement of components also the evolution of the systems by means of new service contracts. The modeling as well as verification capabilities of the presented approach are demonstrated by means of a supply chain example and the verification results of a first prototype are shown.}, language = {en} } @book{GieseHildebrandt2009, author = {Giese, Holger and Hildebrandt, Stephan}, title = {Efficient model synchronization of large-scale models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-84-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29281}, publisher = {Universit{\"a}t Potsdam}, pages = {27}, year = {2009}, abstract = {Model-driven software development requires techniques to consistently propagate modifications between different related models to realize its full potential. For large-scale models, efficiency is essential in this respect. In this paper, we present an improved model synchronization algorithm based on triple graph grammars that is highly efficient and, therefore, can also synchronize large-scale models sufficiently fast. We can show, that the overall algorithm has optimal complexity if it is dominating the rule matching and further present extensive measurements that show the efficiency of the presented model transformation and synchronization technique.}, language = {en} } @book{GieseHildebrandtLambers2010, author = {Giese, Holger and Hildebrandt, Stephan and Lambers, Leen}, title = {Toward bridging the gap between formal semantics and implementation of triple graph grammars}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-078-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45219}, publisher = {Universit{\"a}t Potsdam}, pages = {26}, year = {2010}, abstract = {The correctness of model transformations is a crucial element for the model-driven engineering of high quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the employed implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches it is usually not really clear under which constraints particular implementations are really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. Whereas the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static analysis can be employed to guarantee these criteria.}, language = {en} } @book{GieseHildebrandtNeumannetal.2012, author = {Giese, Holger and Hildebrandt, Stephan and Neumann, Stefan and W{\"a}tzoldt, Sebastian}, title = {Industrial case study on the integration of SysML and AUTOSAR with triple graph grammars}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-191-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60184}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 51}, year = {2012}, abstract = {During the overall development of complex engineering systems different modeling notations are employed. For example, in the domain of automotive systems system engineering models are employed quite early to capture the requirements and basic structuring of the entire system, while software engineering models are used later on to describe the concrete software architecture. Each model helps in addressing the specific design issue with appropriate notations and at a suitable level of abstraction. However, when we step forward from system design to the software design, the engineers have to ensure that all decisions captured in the system design model are correctly transferred to the software engineering model. Even worse, when changes occur later on in either model, today the consistency has to be reestablished in a cumbersome manual step. In this report, we present in an extended version of [Holger Giese, Stefan Neumann, and Stephan Hildebrandt. Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent. In Gregor Engels, Claus Lewerentz, Wilhelm Sch{\"a}fer, Andy Sch{\"u}rr, and B. Westfechtel, editors, Graph Transformations and Model Driven Enginering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, volume 5765 of Lecture Notes in Computer Science, pages 555-579. Springer Berlin / Heidelberg, 2010.] how model synchronization and consistency rules can be applied to automate this task and ensure that the different models are kept consistent. We also introduce a general approach for model synchronization. Besides synchronization, the approach consists of tool adapters as well as consistency rules covering the overlap between the synchronized parts of a model and the rest. We present the model synchronization algorithm based on triple graph grammars in detail and further exemplify the general approach by means of a model synchronization solution between system engineering models in SysML and software engineering models in AUTOSAR which has been developed for an industrial partner. In the appendix as extension to [19] the meta-models and all TGG rules for the SysML to AUTOSAR model synchronization are documented.}, language = {en} } @book{GieseMaximovaSakizloglouetal.2018, author = {Giese, Holger and Maximova, Maria and Sakizloglou, Lucas and Schneider, Sven}, title = {Metric temporal graph logic over typed attributed graphs}, number = {123}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-433-3}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411351}, publisher = {Universit{\"a}t Potsdam}, pages = {29}, year = {2018}, abstract = {Various kinds of typed attributed graphs are used to represent states of systems from a broad range of domains. For dynamic systems, established formalisms such as graph transformations provide a formal model for defining state sequences. We consider the extended case where time elapses between states and introduce a logic to reason about these sequences. With this logic we express properties on the structure and attributes of states as well as on the temporal occurrence of states that are related by their inner structure, which no formal logic over graphs accomplishes concisely so far. Firstly, we introduce graphs with history by equipping every graph element with the timestamp of its creation and, if applicable, its deletion. Secondly, we define a logic on graphs by integrating the temporal operator until into the well-established logic of nested graph conditions. Thirdly, we prove that our logic is equally expressive to nested graph conditions by providing a suitable reduction. Finally, the implementation of this reduction allows for the tool-based analysis of metric temporal properties for state sequences.}, language = {en} } @book{GieseMaximovaSakizloglouetal.2019, author = {Giese, Holger and Maximova, Maria and Sakizloglou, Lucas and Schneider, Sven}, title = {Metric temporal graph logic over typed attributed graphs}, number = {127}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-463-0}, issn = {1613-5652}, doi = {10.25932/publishup-42752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427522}, publisher = {Universit{\"a}t Potsdam}, pages = {34}, year = {2019}, abstract = {Graph repair, restoring consistency of a graph, plays a prominent role in several areas of computer science and beyond: For example, in model-driven engineering, the abstract syntax of models is usually encoded using graphs. Flexible edit operations temporarily create inconsistent graphs not representing a valid model, thus requiring graph repair. Similarly, in graph databases—managing the storage and manipulation of graph data—updates may cause that a given database does not satisfy some integrity constraints, requiring also graph repair. We present a logic-based incremental approach to graph repair, generating a sound and complete (upon termination) overview of least-changing repairs. In our context, we formalize consistency by so-called graph conditions being equivalent to first-order logic on graphs. We present two kind of repair algorithms: State-based repair restores consistency independent of the graph update history, whereas deltabased (or incremental) repair takes this history explicitly into account. Technically, our algorithms rely on an existing model generation algorithm for graph conditions implemented in AutoGraph. Moreover, the delta-based approach uses the new concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph condition. We then demonstrate how to manipulate these STs incrementally with respect to a graph update.}, language = {en} } @book{GroeneKnoepfelKugeletal.2004, author = {Gr{\"o}ne, Bernhard and Kn{\"o}pfel, Andreas and Kugel, Rudolf and Schmidt, Oliver}, title = {The Apache Modeling Project}, isbn = {978-3-937786-14-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33147}, publisher = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {This document presents an introduction to the Apache HTTP Server, covering both an overview and implementation details. It presents results of the Apache Modelling Project done by research assistants and students of the Hasso-Plattner-Institute in 2001, 2002 and 2003. The Apache HTTP Server was used to introduce students to the application of the modeling technique FMC, a method that supports transporting knowledge about complex systems in the domain of information processing (software and hardware as well). After an introduction to HTTP servers in general, we will focus on protocols and web technology. Then we will discuss Apache, its operational environment and its extension capabilities— the module API. Finally we will guide the reader through parts of the Apache source code and explain the most important pieces.}, language = {en} } @book{HagedornSchoebelUflackeretal.2007, author = {Hagedorn, Benjamin and Sch{\"o}bel, Michael and Uflacker, Matthias and Copaciu, Flavius and Milanovic, Nikola}, title = {Proceedings of the fall 2006 workshop of the HPI research school on service-oriented systems engineering}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-939469-58-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33052}, publisher = {Universit{\"a}t Potsdam}, pages = {Getr. Z{\"a}hlung}, year = {2007}, abstract = {1. Design and Composition of 3D Geoinformation Services Benjamin Hagedorn 2. Operating System Abstractions for Service-Based Systems Michael Sch{\"o}bel 3. A Task-oriented Approach to User-centered Design of Service-Based Enterprise Applications Matthias Uflacker 4. A Framework for Adaptive Transport in Service- Oriented Systems based on Performance Prediction Flavius Copaciu 5. Asynchronicity and Loose Coupling in Service-Oriented Architectures Nikola Milanovic}, language = {en} } @book{HauptMarrHirschfeld2011, author = {Haupt, Michael and Marr, Stefan and Hirschfeld, Robert}, title = {CSOM/PL : a virtual machine product line}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-134-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52332}, publisher = {Universit{\"a}t Potsdam}, pages = {26}, year = {2011}, abstract = {CSOM/PL is a software product line (SPL) derived from applying multi-dimensional separation of concerns (MDSOC) techniques to the domain of high-level language virtual machine (VM) implementations. For CSOM/PL, we modularised CSOM, a Smalltalk VM implemented in C, using VMADL (virtual machine architecture description language). Several features of the original CSOM were encapsulated in VMADL modules and composed in various combinations. In an evaluation of our approach, we show that applying MDSOC and SPL principles to a domain as complex as that of VMs is not only feasible but beneficial, as it improves understandability, maintainability, and configurability of VM implementations without harming performance.}, language = {en} } @book{HebigGiese2012, author = {Hebig, Regina and Giese, Holger}, title = {MDE settings in SAP : a descriptive field study}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-192-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60193}, publisher = {Universit{\"a}t Potsdam}, pages = {64}, year = {2012}, abstract = {MDE techniques are more and more used in praxis. However, there is currently a lack of detailed reports about how different MDE techniques are integrated into the development and combined with each other. To learn more about such MDE settings, we performed a descriptive and exploratory field study with SAP, which is a worldwide operating company with around 50.000 employees and builds enterprise software applications. This technical report describes insights we got during this study. For example, we identified that MDE settings are subject to evolution. Finally, this report outlines directions for future research to provide practical advises for the application of MDE settings.}, language = {en} } @book{HebigGieseBatoulisetal.2015, author = {Hebig, Regina and Giese, Holger and Batoulis, Kimon and Langer, Philipp and Zamani Farahani, Armin and Yao, Gary and Wolowyk, Mychajlo}, title = {Development of AUTOSAR standard documents at Carmeq GmbH}, number = {92}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-317-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-71535}, publisher = {Universit{\"a}t Potsdam}, pages = {52}, year = {2015}, abstract = {This report documents the captured MDE history of Carmeq GmbH, in context of the project Evolution of MDE Settings in Practice. The goal of the project is the elicitation of MDE approaches and their evolution.}, language = {en} } @book{HerbstMaschlerNiephausetal.2015, author = {Herbst, Eva-Maria and Maschler, Fabian and Niephaus, Fabio and Reimann, Max and Steier, Julia and Felgentreff, Tim and Lincke, Jens and Taeumel, Marcel and Hirschfeld, Robert and Witt, Carsten}, title = {ecoControl}, number = {93}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-318-3}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72147}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 142}, year = {2015}, abstract = {Eine dezentrale Energieversorgung ist ein erster Schritt in Richtung Energiewende. Dabei werden auch in Mehrfamilienh{\"a}usern vermehrt verschiedene Strom- und W{\"a}rmeerzeuger eingesetzt. Besonders in Deutschland kommen in diesem Zusammenhang Blockheizkraftwerke immer h{\"a}ufiger zum Einsatz, weil sie Gas sehr effizient in Strom und W{\"a}rme umwandeln k{\"o}nnen. Außerdem erm{\"o}glichen sie, im Zusammenspiel mit anderen Energiesystemen wie beispielsweise Photovoltaik-Anlagen, eine kontinuierliche und dezentrale Energieversorgung. Bei dem Betrieb von unterschiedlichen Energiesystemen ist es w{\"u}nschenswert, dass die Systeme aufeinander abgestimmt arbeiten. Allerdings ist es bisher schwierig, heterogene Energiesysteme effizient miteinander zu betreiben. Dadurch bleiben Einsparungspotentiale ungenutzt. Eine zentrale Steuerung kann deshalb die Effizienz des Gesamtsystems verbessern. Mit ecoControl stellen wir einen erweiterbaren Prototypen vor, der die Kooperation von Energiesystemen optimiert und Umweltfaktoren miteinbezieht. Dazu stellt die Software eine einheitliche Bedienungsoberfl{\"a}che zur Konfiguration aller Systeme zur Verf{\"u}gung. Außerdem bietet sie die M{\"o}glichkeit, Optimierungsalgorithmen mit Hilfe einer Programmierschnittstelle zu entwickeln, zu testen und auszuf{\"u}hren. Innerhalb solcher Algorithmen k{\"o}nnen von ecoControl bereitgestellte Vorhersagen genutzt werden. Diese Vorhersagen basieren auf dem individuellen Verhalten von jedem Energiesystem, Wettervorhersagen und auf Prognosen des Energieverbrauchs. Mithilfe einer Simulation k{\"o}nnen Techniker unterschiedliche Konfigurationen und Optimierungen sofort ausprobieren, ohne diese {\"u}ber einen langen Zeitraum an realen Ger{\"a}ten testen zu m{\"u}ssen. ecoControl hilft dar{\"u}ber hinaus auch Hausverwaltungen und Vermietern bei der Verwaltung und Analyse der Energiekosten. Wir haben anhand von Fallbeispielen gezeigt, dass Optimierungsalgorithmen, welche die Nutzung von W{\"a}rmespeichern verbessern, die Effizienz des Gesamtsystems erheblich verbessern k{\"o}nnen. Schließlich kommen wir zu dem Schluss, dass ecoControl in einem n{\"a}chsten Schritt unter echten Bedingungen getestet werden muss, sobald eine geeignete Hardwarekomponente verf{\"u}gbar ist. {\"U}ber diese Schnittstelle werden die Messwerte an ecoControl gesendet und Steuersignale an die Ger{\"a}te weitergeleitet.}, language = {de} } @book{HerschelNaumann2008, author = {Herschel, Melanie and Naumann, Felix}, title = {Space and time scalability of duplicate detection in graph data}, isbn = {978-3-940793-46-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32851}, publisher = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Duplicate detection consists in determining different representations of real-world objects in a database. Recent research has considered the use of relationships among object representations to improve duplicate detection. In the general case where relationships form a graph, research has mainly focused on duplicate detection quality/effectiveness. Scalability has been neglected so far, even though it is crucial for large real-world duplicate detection tasks. In this paper we scale up duplicate detection in graph data (DDG) to large amounts of data and pairwise comparisons, using the support of a relational database system. To this end, we first generalize the process of DDG. We then present how to scale algorithms for DDG in space (amount of data processed with limited main memory) and in time. Finally, we explore how complex similarity computation can be performed efficiently. Experiments on data an order of magnitude larger than data considered so far in DDG clearly show that our methods scale to large amounts of data not residing in main memory.}, language = {en} } @book{HerzbergWeske2013, author = {Herzberg, Nico and Weske, Mathias}, title = {Enriching raw events to enable process intelligence : research challenges}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-241-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64012}, publisher = {Universit{\"a}t Potsdam}, pages = {30}, year = {2013}, abstract = {Business processes are performed within a company's daily business. Thereby, valuable data about the process execution is produced. The quantity and quality of this data is very dependent on the process execution environment that reaches from predominantly manual to fullautomated. Process improvement is one essential cornerstone of business process management to ensure companies' competitiveness and relies on information about the process execution. Especially in manual process environments data directly related to the process execution is rather sparse and incomplete. In this paper, we present an approach that supports the usage and enrichment of process execution data with context data - data that exists orthogonally to business process data - and knowledge from the corresponding process models to provide a high-quality event base for process intelligence subsuming, among others, process monitoring, process analysis, and process mining. Further, we discuss open issues and challenges that are subject to our future work.}, language = {de} } @book{HuCordelMeinel2006, author = {Hu, Ji and Cordel, Dirk and Meinel, Christoph}, title = {A virtual machine architecture for creating IT-security laboratories}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-939469-13-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33077}, publisher = {Universit{\"a}t Potsdam}, pages = {50}, year = {2006}, abstract = {E-learning is a flexible and personalized alternative to traditional education. Nonetheless, existing e-learning systems for IT security education have difficulties in delivering hands-on experience because of the lack of proximity. Laboratory environments and practical exercises are indispensable instruction tools to IT security education, but security education in con-ventional computer laboratories poses the problem of immobility as well as high creation and maintenance costs. Hence, there is a need to effectively transform security laboratories and practical exercises into e-learning forms. This report introduces the Tele-Lab IT-Security architecture that allows students not only to learn IT security principles, but also to gain hands-on security experience by exercises in an online laboratory environment. In this architecture, virtual machines are used to provide safe user work environments instead of real computers. Thus, traditional laboratory environments can be cloned onto the Internet by software, which increases accessibilities to laboratory resources and greatly reduces investment and maintenance costs. Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed to provide effective functionalities, reliability, security, and performance. The virtual machines with appropriate resource allocation, software installation, and system configurations are used to build lightweight security laboratories on a hosting computer. Reliability and availability of laboratory platforms are covered by the virtual machine management framework. This management framework provides necessary monitoring and administration services to detect and recover critical failures of virtual machines at run time. Considering the risk that virtual machines can be misused for compromising production networks, we present security management solutions to prevent misuse of laboratory resources by security isolation at the system and network levels. This work is an attempt to bridge the gap between e-learning/tele-teaching and practical IT security education. It is not to substitute conventional teaching in laboratories but to add practical features to e-learning. This report demonstrates the possibility to implement hands-on security laboratories on the Internet reliably, securely, and economically.}, language = {en} } @book{JuizBermejoCalleetal.2024, author = {Juiz, Carlos and Bermejo, Belen and Calle, Alejandro and Sidorova, Julia and Lundberg, Lars and Weidmann, Vera and Lowitzki, Leon and Mirtschin, Marvin and Hoorn, Andr{\´e} van and Frank, Markus and Schulz, Henning and Stojanovic, Dragan and Stojanovic, Natalija and Stojnev Ilic, Aleksandra and Friedrich, Tobias and Lenzner, Pascal and Weyand, Christopher and Wagner, Markus and Plauth, Max and Polze, Andreas and Nowicki, Marek and Seth, Sugandh and Kaur Chahal, Kuljit and Singh, Gurwinder and Speth, Sandro and Janes, Andrea and Camilli, Matteo and Ziegler, Erik and Schmidberger, Marcel and P{\"o}rschke, Mats and Bartz, Christian and Lorenz, Martin and Meinel, Christoph and Beilich, Robert and Bertazioli, Dario and Carlomagno, Cristiano and Bedoni, Marzia and Messina, Vincenzina}, title = {HPI Future SOC Lab}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {159}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen and Sommer, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-565-1}, issn = {1613-5652}, doi = {10.25932/publishup-59801}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-598014}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 142}, year = {2024}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2020. Selected projects have presented their results on April 21st and November 10th 2020 at the Future SOC Lab Day events.}, language = {en} } @book{KlauckMaschlerTausche2017, author = {Klauck, Stefan and Maschler, Fabian and Tausche, Karsten}, title = {Proceedings of the Fourth HPI Cloud Symposium "Operating the Cloud" 2016}, number = {117}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-401-2}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394513}, publisher = {Universit{\"a}t Potsdam}, pages = {32}, year = {2017}, abstract = {Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic "Operating the Cloud". Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Co-located with the event is the HPI's Future SOC Lab day, which offers an additional attractive and conducive environment for scientific and industry related discussions. "Operating the Cloud" aims to be a platform for productive interactions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration. On the occasion of this symposium we called for submissions of research papers and practitioner's reports. A compilation of the research papers realized during the fourth HPI cloud symposium "Operating the Cloud" 2016 are published in this proceedings. We thank the authors for exciting presentations and insights into their current work and research. Moreover, we look forward to more interesting submissions for the upcoming symposium later in the year. Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic "Operating the Cloud". Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Co-located with the event is the HPI's Future SOC Lab day, which offers an additional attractive and conducive environment for scientific and industry related discussions. "Operating the Cloud" aims to be a platform for productive interactions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration.}, language = {en} } @book{KleineHirschfeldBracha2011, author = {Kleine, Matthias and Hirschfeld, Robert and Bracha, Gilad}, title = {An abstraction for version control systems}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Softwaresystemtechnik an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Softwaresystemtechnik an der Universit{\"a}t Potsdam}, number = {54}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-158-5}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55629}, publisher = {Universit{\"a}t Potsdam}, pages = {77}, year = {2011}, abstract = {Versionsverwaltungssysteme (VCS) erm{\"o}glichen es Entwicklern, {\"A}nderungen an Softwareartifakten zu verwalten. VCS werden mit Hilfe einer Vielzahl verschiedener Werkzeuge bedient, wie z.\,B. graphische Front-ends oder Kommandozeilenwerkzeuge. Es ist w{\"u}nschenswert mit einzelnen solcher Werkzeuge unterschiedliche VCS bedienen zu k{\"o}nnen. Bislang hat sich jedoch keine Abstraktion f{\"u}r Versionsverwaltungssysteme durchgesetzt, mit deren Hilfe solche Werkzeuge erstellt werden k{\"o}nnen. Stattdessen implementieren Werkzeuge zur Interaktion mit mehreren VCS ad-hoc L{\"o}sungen. Diese Masterarbeit stellt Pur vor, eine Abstraktion {\"u}ber Versionsverwaltungskonzepte. Mit Hilfe von Pur k{\"o}nnen Anwendungsprogramme entwickelt werden, die mit mehreren Versionsverwaltungssystemen interagieren k{\"o}nnen. Im Rahmen dieser Arbeit wird eine Implementierung dieser Abstraktion bereitgestellt und mit Hilfe eines Anwendungsprogramms validiert.}, language = {en} } @book{KlinkeVerhoevenRothetal.2022, author = {Klinke, Paula and Verhoeven, Silvan and Roth, Felix and Hagemann, Linus and Alnawa, Tarik and Lincke, Jens and Rein, Patrick and Hirschfeld, Robert}, title = {Tool support for collaborative creation of interactive storytelling media}, number = {141}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-521-7}, issn = {1613-5652}, doi = {10.25932/publishup-51857}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518570}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2022}, abstract = {Scrollytellings are an innovative form of web content. Combining the benefits of books, images, movies, and video games, they are a tool to tell compelling stories and provide excellent learning opportunities. Due to their multi-modality, creating high-quality scrollytellings is not an easy task. Different professions, such as content designers, graphics designers, and developers, need to collaborate to get the best out of the possibilities the scrollytelling format provides. Collaboration unlocks great potential. However, content designers cannot create scrollytellings directly and always need to consult with developers to implement their vision. This can result in misunderstandings. Often, the resulting scrollytelling will not match the designer's vision sufficiently, causing unnecessary iterations. Our project partner Typeshift specializes in the creation of individualized scrollytellings for their clients. Examined existing solutions for authoring interactive content are not optimally suited for creating highly customized scrollytellings while still being able to manipulate all their elements programmatically. Based on their experience and expertise, we developed an editor to author scrollytellings in the lively.next live-programming environment. In this environment, a graphical user interface for content design is combined with powerful possibilities for programming behavior with the morphic system. The editor allows content designers to take on large parts of the creation process of scrollytellings on their own, such as creating the visible elements, animating content, and fine-tuning the scrollytelling. Hence, developers can focus on interactive elements such as simulations and games. Together with Typeshift, we evaluated the tool by recreating an existing scrollytelling and identified possible future enhancements. Our editor streamlines the creation process of scrollytellings. Content designers and developers can now both work on the same scrollytelling. Due to the editor inside of the lively.next environment, they can both work with a set of tools familiar to them and their traits. Thus, we mitigate unnecessary iterations and misunderstandings by enabling content designers to realize large parts of their vision of a scrollytelling on their own. Developers can add advanced and individual behavior. Thus, developers and content designers benefit from a clearer distribution of tasks while keeping the benefits of collaboration.}, language = {en} } @book{KrauseGiese2012, author = {Krause, Christian and Giese, Holger}, title = {Quantitative modeling and analysis of service-oriented real-time systems using interval probabilistic timed automata}, publisher = {Universit{\"a}tsverlah Potsdam}, address = {Potsdam}, isbn = {978-3-86956-171-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57845}, publisher = {Universit{\"a}t Potsdam}, pages = {45}, year = {2012}, abstract = {One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properties for a restricted class of service-oriented real-time systems using formal methods. To properly motivate the choice for the used approach, we devise a requirements catalogue for the modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used models and require distinguished analysis approaches. The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on the outlined requirements, we give evidence that this model provides both enough expressiveness for a realistic and modular specifiation of the targeted class of systems, and suitable formal methods for analyzing properties, such as safety and reliability properties in a quantitative manner. As technical means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic time-bounded reachability analysis and computation of expected reachability rewards and costs. To carry out the quantitative analysis using probabilistic model checking, we developed an extension of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking and computation of expected rewards and costs. We discuss the performance of our extended version of Prism and compare the interval-based IPTA approach to models with fixed probabilities.}, language = {en} } @book{KubanRottaNolteetal.2024, author = {Kuban, Robert and Rotta, Randolf and Nolte, J{\"o}rg and Chromik, Jonas and Beilharz, Jossekin Jakob and Pirl, Lukas and Friedrich, Tobias and Lenzner, Pascal and Weyand, Christopher and Juiz, Carlos and Bermejo, Belen and Sauer, Joao and Coelh, Leandro dos Santos and Najafi, Pejman and P{\"u}nter, Wenzel and Cheng, Feng and Meinel, Christoph and Sidorova, Julia and Lundberg, Lars and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Elsaid, Mohamed Esameldin Mohamed and Abbas, Hazem M. and Rula, Anisa and Sejdiu, Gezim and Maurino, Andrea and Schmidt, Christopher and H{\"u}gle, Johannes and Uflacker, Matthias and Nozza, Debora and Messina, Enza and Hoorn, Andr{\´e} van and Frank, Markus and Schulz, Henning and Alhosseini Almodarresi Yasin, Seyed Ali and Nowicki, Marek and Muite, Benson K. and Boysan, Mehmet Can and Bianchi, Federico and Cremaschi, Marco and Moussa, Rim and Abdel-Karim, Benjamin M. and Pfeuffer, Nicolas and Hinz, Oliver and Plauth, Max and Polze, Andreas and Huo, Da and Melo, Gerard de and Mendes Soares, F{\´a}bio and Oliveira, Roberto C{\´e}lio Lim{\~a}o de and Benson, Lawrence and Paul, Fabian and Werling, Christian and Windheuser, Fabian and Stojanovic, Dragan and Djordjevic, Igor and Stojanovic, Natalija and Stojnev Ilic, Aleksandra and Weidmann, Vera and Lowitzki, Leon and Wagner, Markus and Ifa, Abdessatar Ben and Arlos, Patrik and Megia, Ana and Vendrell, Joan and Pfitzner, Bjarne and Redondo, Alberto and R{\´i}os Insua, David and Albert, Justin Amadeus and Zhou, Lin and Arnrich, Bert and Szab{\´o}, Ildik{\´o} and Fodor, Szabina and Ternai, Katalin and Bhowmik, Rajarshi and Campero Durand, Gabriel and Shevchenko, Pavlo and Malysheva, Milena and Prymak, Ivan and Saake, Gunter}, title = {HPI Future SOC Lab - Proceedings 2019}, number = {158}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-564-4}, issn = {1613-5652}, doi = {10.25932/publishup-59791}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597915}, publisher = {Universit{\"a}t Potsdam}, pages = {xi, 301}, year = {2024}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events.}, language = {en} } @book{KunzeWeske2016, author = {Kunze, Matthias and Weske, Mathias}, title = {Behavioural Models}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-44958-6}, publisher = {Universit{\"a}t Potsdam}, pages = {279}, year = {2016}, abstract = {This textbook introduces the basis for modelling and analysing discrete dynamic systems, such as computer programmes, soft- and hardware systems, and business processes. The underlying concepts are introduced and concrete modelling techniques are described, such as finite automata, state machines, and Petri nets. The concepts are related to concrete application scenarios, among which business processes play a prominent role. The book consists of three parts, the first of which addresses the foundations of behavioural modelling. After a general introduction to modelling, it introduces transition systems as a basic formalism for representing the behaviour of discrete dynamic systems. This section also discusses causality, a fundamental concept for modelling and reasoning about behaviour. In turn, Part II forms the heart of the book and is devoted to models of behaviour. It details both sequential and concurrent systems and introduces finite automata, state machines and several different types of Petri nets. One chapter is especially devoted to business process models, workflow patterns and BPMN, the industry standard for modelling business processes. Lastly, Part III investigates how the behaviour of systems can be analysed. To this end, it introduces readers to the concept of state spaces. Further chapters cover the comparison of behaviour and the formal analysis and verification of behavioural models. The book was written for students of computer science and software engineering, as well as for programmers and system analysts interested in the behaviour of the systems they work on. It takes readers on a journey from the fundamentals of behavioural modelling to advanced techniques for modelling and analysing sequential and concurrent systems, and thus provides them a deep understanding of the concepts and techniques introduced and how they can be applied to concrete application scenarios.}, language = {en} } @book{LangeBoehmNaumann2010, author = {Lange, Dustin and B{\"o}hm, Christoph and Naumann, Felix}, title = {Extracting structured information from Wikipedia articles to populate infoboxes}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-081-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45714}, publisher = {Universit{\"a}t Potsdam}, pages = {27}, year = {2010}, abstract = {Roughly every third Wikipedia article contains an infobox - a table that displays important facts about the subject in attribute-value form. The schema of an infobox, i.e., the attributes that can be expressed for a concept, is defined by an infobox template. Often, authors do not specify all template attributes, resulting in incomplete infoboxes. With iPopulator, we introduce a system that automatically populates infoboxes of Wikipedia articles by extracting attribute values from the article's text. In contrast to prior work, iPopulator detects and exploits the structure of attribute values for independently extracting value parts. We have tested iPopulator on the entire set of infobox templates and provide a detailed analysis of its effectiveness. For instance, we achieve an average extraction precision of 91\% for 1,727 distinct infobox template attributes.}, language = {en} } @book{Lendholt2005, author = {Lendholt, Matthias}, title = {Ressourcenpartitionierung f{\"u}r Grid-Systeme}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-937786-72-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33121}, publisher = {Universit{\"a}t Potsdam}, pages = {97}, year = {2005}, abstract = {1 Einleitung 1.1 Motivation 1.2 Aufgabenstellung 1.3 Aufbau der Arbeit 2 Fachliches Umfeld 2.1 Grid Computing 2.2 Idle Time Computing 3 Ressourcenpartitionierung 3.1 Ressourcenpartitionierung und Scheduling 3.2 Ressourcenpartitionierung in Idle Time Computing 3.2.1 Administrative Kontrolle der Ressourcen 3.2.2 Mindestgarantien zur Sicherstellung der Lauff{\"a}higkeit 3.3 Vorhandene L{\"o}sungen und verwandte Arbeiten 3.3.3 Ressourcenmanagement im Globus Toolkit 3.3.4 Ressourcenmanagement in Condor 3.3.5 Das GARA Framework 3.3.6 Distributed Resource Management Application API 3.3.7 Grid Resource Allocation Agreement Protocol 3.3.8 SNAP 3.3.9 OGSI-Agreement 3.3.10 PBS/Maui und andere Batch Systeme 3.3.11 Wide Area Distributed Computing 3.3.12 Weitere verwandte Arbeiten 3.3.13 {\"U}berlegungen zum Ressourcenbedarf 4 Ressourcenkontrolle in Desktopbetriebssystemen 4.1 Ressourcen 4.2 Ressourcenpartitionierung unter Linux 4.2.14 Festplattenkapazit{\"a}t 4.2.15 Arbeitsspeicher 4.2.16 Netzwerkbandbreite 4.2.17 CPU Kapazit{\"a}t 4.3 Ressourcenpartitionierung unter Microsoft Windows XP 4.3.18 Festplattenkapazit{\"a}t 4.3.19 Arbeitsspeicher 4.3.20 Netzwerkbandbreite 4.3.21 CPU Kapazit{\"a}t 4.4 Fazit 5 Entwurf und Design des Frameworks 5.1 Entwurfsgrundlage - Komponentenarchitektur 5.2 Architektur 5.2.22 Broker Server 5.2.23 Broker Software auf den Clients 5.2.24 Schnittstellen 5.3 Komponententypmodell 5.4 Ressourcenidentifikation und Ressourcenzuordnung 5.5 Anbindung ans Grid 5.6 Datenbankentwurf 5.7 XML RPC Schnittstelle 6 Implementierung 6.1 Broker Server 6.1.25 Datenbank 6.1.26 Komponenten 6.1.27 Webserverskripte 6.1.28 Database Crawler 6.2 Komponenten 6.2.29 Network 6.2.30 DSCP 6.2.31 Quota 6.2.32 FSF 6.3 Linux Client 6.3.33 Broker Client 6.3.34 Komponenten 6.4 Windows Client 6.5 Abh{\"a}ngigkeiten 7 Evaluierung 7.1 Durchgef{\"u}hrte Test- und Anwendungsf{\"a}lle 7.1.35 Test der Clientsoftware 7.1.36 Test der Serversoftware 7.1.37 Durchf{\"u}hrbare Anwendungsf{\"a}lle 7.2 Evaluierung der Frameworkimplementierung 7.2.38 Performanz der Serverimplementierung 7.2.39 Zuverl{\"a}ssigkeit der Partitionierungen 7.3 Evaluierung von Traffic Shaping mit iproute2 7.3.40 Szenario 1 7.3.41 Szenario 2 7.3.42 Szenario 3 7.3.43 Fazit 8 Zusammenfassung und Ausblick 8.1 Fazit 8.2 Weiterentwicklung 8.2.44 Weiterentwicklungen auf Entwurfsebene 8.2.45 Weiterentwicklungen auf Implementierungsebene Anhang A: Details zum Datenbankentwurf Anhang B: Bildschirmfotos der Weboberfl{\"a}che Anhang C: Quellcode Linux Broker Client Anhang D: Inhalt des beiliegenden Datentr{\"a}gers}, language = {de} } @book{LinckelsMeinel2005, author = {Linckels, Serge and Meinel, Christoph}, title = {An e-librarian service : natural language interface for an efficient semantic search within multimedia resources}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-937786-89-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33088}, publisher = {Universit{\"a}t Potsdam}, pages = {40}, year = {2005}, abstract = {1 Introduction 1.1 Project formulation 1.2 Our contribution 2 Pedagogical Aspect 4 2.1 Modern teaching 2.2 Our Contribution 2.2.1 Autonomous and exploratory learning 2.2.2 Human machine interaction 2.2.3 Short multimedia clips 3 Ontology Aspect 3.1 Ontology driven expert systems 3.2 Our contribution 3.2.1 Ontology language 3.2.2 Concept Taxonomy 3.2.3 Knowledge base annotation 3.2.4 Description Logics 4 Natural language approach 4.1 Natural language processing in computer science 4.2 Our contribution 4.2.1 Explored strategies 4.2.2 Word equivalence 4.2.3 Semantic interpretation 4.2.4 Various problems 5 Information Retrieval Aspect 5.1 Modern information retrieval 5.2 Our contribution 5.2.1 Semantic query generation 5.2.2 Semantic relatedness 6 Implementation 6.1 Prototypes 6.2 Semantic layer architecture 6.3 Development 7 Experiments 7.1 Description of the experiments 7.2 General characteristics of the three sessions, instructions and procedure 7.3 First Session 7.4 Second Session 7.5 Third Session 7.6 Discussion and conclusion 8 Conclusion and future work 8.1 Conclusion 8.2 Open questions A Description Logics B Probabilistic context-free grammars}, language = {en} } @book{Luebbe2011, author = {L{\"u}bbe, Alexander}, title = {The effect of tangible media on individuals in business process modeling : a controlled experiment = Der Einfluss greifbarer Medien auf einzelne Personen bei der Gesch{\"a}ftsprozessmodellierung : ein kontrolliertes Experiment}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-108-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49001}, publisher = {Universit{\"a}t Potsdam}, pages = {42}, year = {2011}, abstract = {In current practice, business processes modeling is done by trained method experts. Domain experts are interviewed to elicit their process information but not involved in modeling. We created a haptic toolkit for process modeling that can be used in process elicitation sessions with domain experts. We hypothesize that this leads to more effective process elicitation. This paper brakes down "effective elicitation" to 14 operationalized hypotheses. They are assessed in a controlled experiment using questionnaires, process model feedback tests and video analysis. The experiment compares our approach to structured interviews in a repeated measurement design. We executed the experiment with 17 student clerks from a trade school. They represent potential users of the tool. Six out of fourteen hypotheses showed significant difference due to the method applied. Subjects reported more fun and more insights into process modeling with tangible media. Video analysis showed significantly more reviews and corrections applied during process elicitation. Moreover, people take more time to talk and think about their processes. We conclude that tangible media creates a different working mode for people in process elicitation with fun, new insights and instant feedback on preliminary results.}, language = {en} } @book{MaximovaGieseKrause2017, author = {Maximova, Maria and Giese, Holger and Krause, Christian}, title = {Probabilistic timed graph transformation systems}, number = {118}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-405-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397055}, publisher = {Universit{\"a}t Potsdam}, pages = {34}, year = {2017}, abstract = {Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Therefore besides timed behavior and probabilistic behaviour also structure dynamics, where the architecture can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically, is required. However, a modeling and analysis approach that combines all these necessary aspects does not exist so far. To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper and present a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties.}, language = {en} } @book{MaximovaSchneiderGiese2020, author = {Maximova, Maria and Schneider, Sven and Giese, Holger}, title = {Compositional analysis of probabilistic timed graph transformation systems}, number = {133}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-501-9}, issn = {1613-5652}, doi = {10.25932/publishup-49013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490131}, publisher = {Universit{\"a}t Potsdam}, pages = {53}, year = {2020}, abstract = {The analysis of behavioral models is of high importance for cyber-physical systems, as the systems often encompass complex behavior based on e.g. concurrent components with mutual exclusion or probabilistic failures on demand. The rule-based formalism of probabilistic timed graph transformation systems is a suitable choice when the models representing states of the system can be understood as graphs and timed and probabilistic behavior is important. However, model checking PTGTSs is limited to systems with rather small state spaces. We present an approach for the analysis of large scale systems modeled as probabilistic timed graph transformation systems by systematically decomposing their state spaces into manageable fragments. To obtain qualitative and quantitative analysis results for a large scale system, we verify that results obtained for its fragments serve as overapproximations for the corresponding results of the large scale system. Hence, our approach allows for the detection of violations of qualitative and quantitative safety properties for the large scale system under analysis. We consider a running example in which we model shuttles driving on tracks of a large scale topology and for which we verify that shuttles never collide and are unlikely to execute emergency brakes. In our evaluation, we apply an implementation of our approach to the running example.}, language = {en} } @book{MaximovaSchneiderGiese2021, author = {Maximova, Maria and Schneider, Sven and Giese, Holger}, title = {Interval probabilistic timed graph transformation systems}, number = {134}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-502-6}, issn = {1613-5652}, doi = {10.25932/publishup-51289}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512895}, publisher = {Universit{\"a}t Potsdam}, pages = {58}, year = {2021}, abstract = {The formal modeling and analysis is of crucial importance for software development processes following the model based approach. We present the formalism of Interval Probabilistic Timed Graph Transformation Systems (IPTGTSs) as a high-level modeling language. This language supports structure dynamics (based on graph transformation), timed behavior (based on clocks, guards, resets, and invariants as in Timed Automata (TA)), and interval probabilistic behavior (based on Discrete Interval Probability Distributions). That is, for the probabilistic behavior, the modeler using IPTGTSs does not need to provide precise probabilities, which are often impossible to obtain, but rather provides a probability range instead from which a precise probability is chosen nondeterministically. In fact, this feature on capturing probabilistic behavior distinguishes IPTGTSs from Probabilistic Timed Graph Transformation Systems (PTGTSs) presented earlier. Following earlier work on Interval Probabilistic Timed Automata (IPTA) and PTGTSs, we also provide an analysis tool chain for IPTGTSs based on inter-formalism transformations. In particular, we provide in our tool AutoGraph a translation of IPTGTSs to IPTA and rely on a mapping of IPTA to Probabilistic Timed Automata (PTA) to allow for the usage of the Prism model checker. The tool Prism can then be used to analyze the resulting PTA w.r.t. probabilistic real-time queries asking for worst-case and best-case probabilities to reach a certain set of target states in a given amount of time.}, language = {en} } @book{MeinelDoellnerWeskeetal.2021, author = {Meinel, Christoph and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and B{\"o}ttinger, Erwin and Lippert, Christoph and D{\"o}rr, Christian and Lehmann, Anja and Renard, Bernhard and Rabl, Tilmann and Uebernickel, Falk and Arnrich, Bert and H{\"o}lzle, Katharina}, title = {Proceedings of the HPI Research School on Service-oriented Systems Engineering 2020 Fall Retreat}, number = {138}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-513-2}, issn = {1613-5652}, doi = {10.25932/publishup-50413}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-504132}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 144}, year = {2021}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @book{MeinelGalbasHageboelling2023, author = {Meinel, Christoph and Galbas, Michael and Hageb{\"o}lling, David}, title = {Digitale Souver{\"a}nit{\"a}t: Erkenntnisse aus dem deutschen Bildungssektor}, number = {156}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-560-6}, issn = {1613-5652}, doi = {10.25932/publishup-59513}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595138}, publisher = {Universit{\"a}t Potsdam}, pages = {1 -- 29}, year = {2023}, abstract = {Digitale Technologien bieten erhebliche politische, wirtschaftliche und gesellschaftliche Chancen. Zugleich ist der Begriff digitale Souver{\"a}nit{\"a}t zu einem Leitmotiv im deutschen Diskurs {\"u}ber digitale Technologien geworden: das heißt, die F{\"a}higkeit des Staates, seine Verantwortung wahrzunehmen und die Bef{\"a}higung der Gesellschaft - und des Einzelnen - sicherzustellen, die digitale Transformation selbstbestimmt zu gestalten. Exemplarisch f{\"u}r die Herausforderung in Deutschland und Europa, die Vorteile digitaler Technologien zu nutzen und gleichzeitig Souver{\"a}nit{\"a}tsbedenken zu ber{\"u}cksichtigen, steht der Bildungssektor. Er umfasst Bildung als zentrales {\"o}ffentliches Gut, ein schnell aufkommendes Gesch{\"a}ftsfeld und wachsende Best{\"a}nde an hochsensiblen personenbezogenen Daten. Davon ausgehend beschreibt der Bericht Wege zur Entsch{\"a}rfung des Spannungsverh{\"a}ltnisses zwischen Digitalisierung und Souver{\"a}nit{\"a}t auf drei verschiedenen Ebenen - Staat, Wirtschaft und Individuum - anhand konkreter technischer Projekte im Bildungsbereich: die HPI Schul-Cloud (staatliche Souver{\"a}nit{\"a}t), die MERLOT-Datenr{\"a}ume (wirtschaftliche Souver{\"a}nit{\"a}t) und die openHPI-Plattform (individuelle Souver{\"a}nit{\"a}t).}, language = {de} } @book{MeinelGalbasHageboelling2023, author = {Meinel, Christoph and Galbas, Michael and Hageb{\"o}lling, David}, title = {Digital sovereignty: insights from Germany's education sector}, number = {157}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-561-3}, issn = {1613-5652}, doi = {10.25932/publishup-59772}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597723}, publisher = {Universit{\"a}t Potsdam}, pages = {1 -- 27}, year = {2023}, abstract = {Digital technology offers significant political, economic, and societal opportunities. At the same time, the notion of digital sovereignty has become a leitmotif in German discourse: the state's capacity to assume its responsibilities and safeguard society's - and individuals' - ability to shape the digital transformation in a self-determined way. The education sector is exemplary for the challenge faced by Germany, and indeed Europe, of harnessing the benefits of digital technology while navigating concerns around sovereignty. It encompasses education as a core public good, a rapidly growing field of business, and growing pools of highly sensitive personal data. The report describes pathways to mitigating the tension between digitalization and sovereignty at three different levels - state, economy, and individual - through the lens of concrete technical projects in the education sector: the HPI Schul-Cloud (state sovereignty), the MERLOT data spaces (economic sovereignty), and the openHPI platform (individual sovereignty).}, language = {en} }