@article{DimopoulosGebserLuehneetal.2019, author = {Dimopoulos, Yannis and Gebser, Martin and L{\"u}hne, Patrick and Romero Davila, Javier and Schaub, Torsten H.}, title = {plasp 3}, series = {Theory and practice of logic programming}, volume = {19}, journal = {Theory and practice of logic programming}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068418000583}, pages = {477 -- 504}, year = {2019}, abstract = {We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning.}, language = {en} } @article{DiethelmSyrbe2015, author = {Diethelm, Ira and Syrbe, J{\"o}rn}, title = {Let's talk about CS!}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82983}, pages = {411 -- 414}, year = {2015}, abstract = {To communicate about a science is the most important key competence in education for any science. Without communication we cannot teach, so teachers should reflect about the language they use in class properly. But the language students and teachers use to communicate about their CS courses is very heterogeneous, inconsistent and deeply influenced by tool names. There is a big lack of research and discussion in CS education regarding the terminology and the role of concepts and tools in our science. We don't have a consistent set of terminology that we agree on to be helpful for learning our science. This makes it nearly impossible to do research on CS competencies as long as we have not agreed on the names we use to describe these. This workshop intends to provide room to fill with discussion and first ideas for future research in this field.}, language = {en} } @article{DelgadoKloos2015, author = {Delgado Kloos, Carlos}, title = {What about the Competencies of Educators in the New Era of Digital Education?}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83015}, pages = {435 -- 438}, year = {2015}, abstract = {A lot has been published about the competencies needed by students in the 21st century (Ravenscroft et al., 2012). However, equally important are the competencies needed by educators in the new era of digital education. We review the key competencies for educators in light of the new methods of teaching and learning proposed by Massive Open Online Courses (MOOCs) and their on-campus counterparts, Small Private Online Courses (SPOCs).}, language = {en} } @article{DagieneStupuriene2015, author = {Dagiene, Valentina and Stupuriene, Gabriele}, title = {Informatics Education based on Solving Attractive Tasks through a Contest}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82626}, pages = {97 -- 115}, year = {2015}, abstract = {The paper discusses the issue of supporting informatics (computer science) education through competitions for lower and upper secondary school students (8-19 years old). Competitions play an important role for learners as a source of inspiration, innovation, and attraction. Running contests in informatics for school students for many years, we have noticed that the students consider the contest experience very engaging and exciting as well as a learning experience. A contest is an excellent instrument to involve students in problem solving activities. An overview of infrastructure and development of an informatics contest from international level to the national one (the Bebras contest on informatics and computer fluency, originated in Lithuania) is presented. The performance of Bebras contests in 23 countries during the last 10 years showed an unexpected and unusually high acceptance by school students and teachers. Many thousands of students participated and got a valuable input in addition to their regular informatics lectures at school. In the paper, the main attention is paid to the developed tasks and analysis of students' task solving results in Lithuania.}, language = {en} } @article{Curzon2015, author = {Curzon, Paul}, title = {Unplugged Computational Thinking for Fun}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82575}, pages = {15 -- 27}, year = {2015}, abstract = {Computational thinking is a fundamental skill set that is learned by studying Informatics and ICT. We argue that its core ideas can be introduced in an inspiring and integrated way to both teachers and students using fun and contextually rich cs4fn 'Computer Science for Fun' stories combined with 'unplugged' activities including games and magic tricks. We also argue that understanding people is an important part of computational thinking. Computational thinking can be fun for everyone when taught in kinaesthetic ways away from technology.}, language = {en} } @article{ChristensenKnezek2015, author = {Christensen, Rhonda and Knezek, Gerald}, title = {The Technology Proficiency Self-Assessment Questionnaire (TPSA)}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82838}, pages = {311 -- 318}, year = {2015}, abstract = {The Technology Proficiency Self-Assessment (TPSA) questionnaire has been used for 15 years in the USA and other nations as a self-efficacy measure for proficiencies fundamental to effective technology integration in the classroom learning environment. Internal consistency reliabilities for each of the five-item scales have typically ranged from .73 to .88 for preservice or inservice technology-using teachers. Due to changing technologies used in education, researchers sought to renovate partially obsolete items and extend self-efficacy assessment to new areas, such as social media and mobile learning. Analysis of 2014 data gathered on a new, 34 item version of the TPSA indicates that the four established areas of email, World Wide Web (WWW), integrated applications, and teaching with technology continue to form consistent scales with reliabilities ranging from .81 to .93, while the 14 new items gathered to represent emerging technologies and media separate into two scales, each with internal consistency reliabilities greater than .9. The renovated TPSA is deemed to be worthy of continued use in the teaching with technology context.}, language = {en} } @article{ChenLangeAndjelkovicetal.2022, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Marko and Simevski, Aleksandar and Lu, Li and Krstić, Miloš}, title = {Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning}, series = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, volume = {10}, journal = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, number = {2}, publisher = {Institute of Electrical and Electronics Engineers}, address = {[New York, NY]}, issn = {2168-6750}, doi = {10.1109/TETC.2022.3147376}, pages = {564 -- 580}, year = {2022}, abstract = {The intensity of cosmic radiation may differ over five orders of magnitude within a few hours or days during the Solar Particle Events (SPEs), thus increasing for several orders of magnitude the probability of Single Event Upsets (SEUs) in space-borne electronic systems. Therefore, it is vital to enable the early detection of the SEU rate changes in order to ensure timely activation of dynamic radiation hardening measures. In this paper, an embedded approach for the prediction of SPEs and SRAM SEU rate is presented. The proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine learning model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings the following benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing the hardware and power overhead, (2) Prediction of SRAM SEU rate one hour in advance, with the fine-grained hourly tracking of SEU variations during SPEs as well as under normal conditions, (3) Online optimization of the prediction model for enhancing the prediction accuracy during run-time, (4) Negligible cost of hardware accelerator design for the implementation of selected machine learning model and online learning algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system employed in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of high radiation levels.}, language = {en} } @article{CabalarFandinoFarinasdelCerro2021, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Fari{\~n}as del Cerro, Luis}, title = {Splitting epistemic logic programs}, series = {Theory and practice of logic programming / publ. for the Association for Logic Programming}, volume = {21}, journal = {Theory and practice of logic programming / publ. for the Association for Logic Programming}, number = {3}, publisher = {Cambridge Univ. Press}, address = {Cambridge [u.a.]}, issn = {1471-0684}, doi = {10.1017/S1471068420000058}, pages = {296 -- 316}, year = {2021}, abstract = {Epistemic logic programs constitute an extension of the stable model semantics to deal with new constructs called subjective literals. Informally speaking, a subjective literal allows checking whether some objective literal is true in all or some stable models. As it can be imagined, the associated semantics has proved to be non-trivial, since the truth of subjective literals may interfere with the set of stable models it is supposed to query. As a consequence, no clear agreement has been reached and different semantic proposals have been made in the literature. Unfortunately, comparison among these proposals has been limited to a study of their effect on individual examples, rather than identifying general properties to be checked. In this paper, we propose an extension of the well-known splitting property for logic programs to the epistemic case. We formally define when an arbitrary semantics satisfies the epistemic splitting property and examine some of the consequences that can be derived from that, including its relation to conformant planning and to epistemic constraints. Interestingly, we prove (through counterexamples) that most of the existing approaches fail to fulfill the epistemic splitting property, except the original semantics proposed by Gelfond 1991 and a recent proposal by the authors, called Founded Autoepistemic Equilibrium Logic.}, language = {en} } @article{Buechner2015, author = {B{\"u}chner, Steffen}, title = {Empirical and Normative Research on Fundamental Ideas of Embedded System Development}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82949}, pages = {393 -- 396}, year = {2015}, language = {en} } @article{BroekerKastensMagenheim2015, author = {Br{\"o}ker, Kathrin and Kastens, Uwe and Magenheim, Johannes}, title = {Competences of Undergraduate Computer Science Students}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82613}, pages = {77 -- 96}, year = {2015}, abstract = {The paper presents two approaches to the development of a Computer Science Competence Model for the needs of curriculum development and evaluation in Higher Education. A normativetheoretical approach is based on the AKT and ACM/IEEE curriculum and will be used within the recommendations of the German Informatics Society (GI) for the design of CS curricula. An empirically oriented approach refines the categories of the first one with regard to specific subject areas by conducting content analysis on CS curricula of important universities from several countries. The refined model will be used for the needs of students' e-assessment and subsequent affirmative action of the CS departments.}, language = {en} } @article{BrewkaEllmauthalerKernIsberneretal.2018, author = {Brewka, Gerhard and Ellmauthaler, Stefan and Kern-Isberner, Gabriele and Obermeier, Philipp and Ostrowski, Max and Romero, Javier and Schaub, Torsten H. and Schieweck, Steffen}, title = {Advanced solving technology for dynamic and reactive applications}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0538-8}, pages = {199 -- 200}, year = {2018}, language = {en} } @article{BredeBotta2021, author = {Brede, Nuria and Botta, Nicola}, title = {On the correctness of monadic backward induction}, series = {Journal of functional programming}, volume = {31}, journal = {Journal of functional programming}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1469-7653}, doi = {10.1017/S0956796821000228}, pages = {39}, year = {2021}, abstract = {In control theory, to solve a finite-horizon sequential decision problem (SDP) commonly means to find a list of decision rules that result in an optimal expected total reward (or cost) when taking a given number of decision steps. SDPs are routinely solved using Bellman's backward induction. Textbook authors (e.g. Bertsekas or Puterman) typically give more or less formal proofs to show that the backward induction algorithm is correct as solution method for deterministic and stochastic SDPs. Botta, Jansson and Ionescu propose a generic framework for finite horizon, monadic SDPs together with a monadic version of backward induction for solving such SDPs. In monadic SDPs, the monad captures a generic notion of uncertainty, while a generic measure function aggregates rewards. In the present paper, we define a notion of correctness for monadic SDPs and identify three conditions that allow us to prove a correctness result for monadic backward induction that is comparable to textbook correctness proofs for ordinary backward induction. The conditions that we impose are fairly general and can be cast in category-theoretical terms using the notion of Eilenberg-Moore algebra. They hold in familiar settings like those of deterministic or stochastic SDPs, but we also give examples in which they fail. Our results show that backward induction can safely be employed for a broader class of SDPs than usually treated in textbooks. However, they also rule out certain instances that were considered admissible in the context of Botta et al. 's generic framework. Our development is formalised in Idris as an extension of the Botta et al. framework and the sources are available as supplementary material.}, language = {en} } @article{BottinoChioccariello2015, author = {Bottino, Rosa and Chioccariello, Augusto}, title = {Computational Thinking}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82820}, pages = {301 -- 309}, year = {2015}, abstract = {Digital technology has radically changed the way people work in industry, finance, services, media and commerce. Informatics has contributed to the scientific and technological development of our society in general and to the digital revolution in particular. Computational thinking is the term indicating the key ideas of this discipline that might be included in the key competencies underlying the curriculum of compulsory education. The educational potential of informatics has a history dating back to the sixties. In this article, we briefly revisit this history looking for lessons learned. In particular, we focus on experiences of teaching and learning programming. However, computational thinking is more than coding. It is a way of thinking and practicing interactive dynamic modeling with computers. We advocate that learners can practice computational thinking in playful contexts where they can develop personal projects, for example building videogames and/or robots, share and discuss their construction with others. In our view, this approach allows an integration of computational thinking in the K-12 curriculum across disciplines.}, language = {en} } @article{BordihnVaszil2020, author = {Bordihn, Henning and Vaszil, Gy{\"o}rgy}, title = {Deterministic Lindenmayer systems with dynamic control of parallelism}, series = {International journal of foundations of computer science}, volume = {31}, journal = {International journal of foundations of computer science}, number = {1}, publisher = {World Scientific}, address = {Singapore}, issn = {0129-0541}, doi = {10.1142/S0129054120400031}, pages = {37 -- 51}, year = {2020}, abstract = {M-rate 0L systems are interactionless Lindenmayer systems together with a function assigning to every string a set of multisets of productions that may be applied simultaneously to the string. Some questions that have been left open in the forerunner papers are examined, and the computational power of deterministic M-rate 0L systems is investigated, where also tabled and extended variants are taken into consideration.}, language = {en} } @article{BordihnVaszil2021, author = {Bordihn, Henning and Vaszil, Gy{\"o}rgy}, title = {Reversible parallel communicating finite automata systems}, series = {Acta informatica}, volume = {58}, journal = {Acta informatica}, number = {4}, publisher = {Springer}, address = {Berlin ; Heidelberg ; New York, NY}, issn = {0001-5903}, doi = {10.1007/s00236-021-00396-9}, pages = {263 -- 279}, year = {2021}, abstract = {We study the concept of reversibility in connection with parallel communicating systems of finite automata (PCFA in short). We define the notion of reversibility in the case of PCFA (also covering the non-deterministic case) and discuss the relationship of the reversibility of the systems and the reversibility of its components. We show that a system can be reversible with non-reversible components, and the other way around, the reversibility of the components does not necessarily imply the reversibility of the system as a whole. We also investigate the computational power of deterministic centralized reversible PCFA. We show that these very simple types of PCFA (returning or non-returning) can recognize regular languages which cannot be accepted by reversible (deterministic) finite automata, and that they can even accept languages that are not context-free. We also separate the deterministic and non-deterministic variants in the case of systems with non-returning communication. We show that there are languages accepted by non-deterministic centralized PCFA, which cannot be recognized by any deterministic variant of the same type.}, language = {en} } @article{BordihnHolzer2021, author = {Bordihn, Henning and Holzer, Markus}, title = {On the number of active states in finite automata}, series = {Acta informatica}, volume = {58}, journal = {Acta informatica}, number = {4}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {0001-5903}, doi = {10.1007/s00236-021-00397-8}, pages = {301 -- 318}, year = {2021}, abstract = {We introduce a new measure of descriptional complexity on finite automata, called the number of active states. Roughly speaking, the number of active states of an automaton A on input w counts the number of different states visited during the most economic computation of the automaton A for the word w. This concept generalizes to finite automata and regular languages in a straightforward way. We show that the number of active states of both finite automata and regular languages is computable, even with respect to nondeterministic finite automata. We further compare the number of active states to related measures for regular languages. In particular, we show incomparability to the radius of regular languages and that the difference between the number of active states and the total number of states needed in finite automata for a regular language can be of exponential order.}, language = {en} } @article{Blaese2014, author = {Blaese, Leif}, title = {Data mining for unidentified protein squences}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {73 -- 87}, year = {2014}, abstract = {Through the use of next generation sequencing (NGS) technology, a lot of newly sequenced organisms are now available. Annotating those genes is one of the most challenging tasks in sequence biology. Here, we present an automated workflow to find homologue proteins, annotate sequences according to function and create a three-dimensional model.}, language = {en} } @article{BarnesKennewell2015, author = {Barnes, Jan and Kennewell, Steve}, title = {Teacher Perceptions of Key Competencies in ICT}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82604}, pages = {61 -- 75}, year = {2015}, abstract = {Regardless of what is intended by government curriculum specifications and advised by educational experts, the competencies taught and learned in and out of classrooms can vary considerably. In this paper, we discuss in particular how we can investigate the perceptions that individual teachers have of competencies in ICT, and how these and other factors may influence students' learning. We report case study research which identifies contradictions within the teaching of ICT competencies as an activity system, highlighting issues concerning the object of the curriculum, the roles of the participants and the school cultures. In a particular case, contradictions in the learning objectives between higher order skills and the use of application tools have been resolved by a change in the teacher's perceptions which have not led to changes in other aspects of the activity system. We look forward to further investigation of the effects of these contradictions in other case studies and on forthcoming curriculum change.}, language = {en} } @article{Arnold2007, author = {Arnold, Holger}, title = {A linearized DPLL calculus with learning}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15421}, year = {2007}, abstract = {This paper describes the proof calculus LD for clausal propositional logic, which is a linearized form of the well-known DPLL calculus extended by clause learning. It is motivated by the demand to model how current SAT solvers built on clause learning are working, while abstracting from decision heuristics and implementation details. The calculus is proved sound and terminating. Further, it is shown that both the original DPLL calculus and the conflict-directed backtracking calculus with clause learning, as it is implemented in many current SAT solvers, are complete and proof-confluent instances of the LD calculus.}, language = {en} } @article{AlSaffar2013, author = {Al-Saffar, Loay Talib Ahmed}, title = {Where girls take the role of boys in CS}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65034}, pages = {149 -- 154}, year = {2013}, abstract = {A survey has been carried out in the Computer Science (CS) department at the University of Baghdad to investigate the attitudes of CS students in a female dominant environment, showing the differences between male and female students in different academic years. We also compare the attitudes of the freshman students of two different cultures (University of Baghdad, Iraq, and the University of Potsdam).}, language = {en} }