@phdthesis{Neuhaus2017, author = {Neuhaus, Christian}, title = {Sicherheitsmechanismen f{\"u}r dienstbasierte Softwaresysteme}, school = {Universit{\"a}t Potsdam}, pages = {183}, year = {2017}, language = {de} } @article{DereudreMazzonettoRoelly2017, author = {Dereudre, David and Mazzonetto, Sara and Roelly, Sylvie}, title = {Exact simulation of Brownian diffusions with drift admitting jumps}, series = {SIAM journal on scientific computing}, volume = {39}, journal = {SIAM journal on scientific computing}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1064-8275}, doi = {10.1137/16M107699X}, pages = {A711 -- A740}, year = {2017}, abstract = {In this paper, using an algorithm based on the retrospective rejection sampling scheme introduced in [A. Beskos, O. Papaspiliopoulos, and G. O. Roberts,Methodol. Comput. Appl. Probab., 10 (2008), pp. 85-104] and [P. Etore and M. Martinez, ESAIM Probab.Stat., 18 (2014), pp. 686-702], we propose an exact simulation of a Brownian di ff usion whose drift admits several jumps. We treat explicitly and extensively the case of two jumps, providing numerical simulations. Our main contribution is to manage the technical di ffi culty due to the presence of t w o jumps thanks to a new explicit expression of the transition density of the skew Brownian motion with two semipermeable barriers and a constant drift.}, language = {en} } @phdthesis{Felgentreff2017, author = {Felgentreff, Tim}, title = {The Design and Implementation of Object-Constraint Programming}, school = {Universit{\"a}t Potsdam}, pages = {183}, year = {2017}, language = {en} } @article{ChujfiLaRocheMeinel2017, author = {Chujfi-La-Roche, Salim and Meinel, Christoph}, title = {Matching cognitively sympathetic individual styles to develop collective intelligence in digital communities}, series = {AI \& society : the journal of human-centred systems and machine intelligence}, volume = {35}, journal = {AI \& society : the journal of human-centred systems and machine intelligence}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0951-5666}, doi = {10.1007/s00146-017-0780-x}, pages = {5 -- 15}, year = {2017}, abstract = {Creation, collection and retention of knowledge in digital communities is an activity that currently requires being explicitly targeted as a secure method of keeping intellectual capital growing in the digital era. In particular, we consider it relevant to analyze and evaluate the empathetic cognitive personalities and behaviors that individuals now have with the change from face-to-face communication (F2F) to computer-mediated communication (CMC) online. This document proposes a cyber-humanistic approach to enhance the traditional SECI knowledge management model. A cognitive perception is added to its cyclical process following design thinking interaction, exemplary for improvement of the method in which knowledge is continuously created, converted and shared. In building a cognitive-centered model, we specifically focus on the effective identification and response to cognitive stimulation of individuals, as they are the intellectual generators and multiplicators of knowledge in the online environment. Our target is to identify how geographically distributed-digital-organizations should align the individual's cognitive abilities to promote iteration and improve interaction as a reliable stimulant of collective intelligence. The new model focuses on analyzing the four different stages of knowledge processing, where individuals with sympathetic cognitive personalities can significantly boost knowledge creation in a virtual social system. For organizations, this means that multidisciplinary individuals can maximize their extensive potential, by externalizing their knowledge in the correct stage of the knowledge creation process, and by collaborating with their appropriate sympathetically cognitive remote peers.}, language = {en} }