@phdthesis{Vitagliano2024, author = {Vitagliano, Gerardo}, title = {Modeling the structure of tabular files for data preparation}, doi = {10.25932/publishup-62435}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624351}, school = {Universit{\"a}t Potsdam}, pages = {ii, 114}, year = {2024}, abstract = {To manage tabular data files and leverage their content in a given downstream task, practitioners often design and execute complex transformation pipelines to prepare them. The complexity of such pipelines stems from different factors, including the nature of the preparation tasks, often exploratory or ad-hoc to specific datasets; the large repertory of tools, algorithms, and frameworks that practitioners need to master; and the volume, variety, and velocity of the files to be prepared. Metadata plays a fundamental role in reducing this complexity: characterizing a file assists end users in the design of data preprocessing pipelines, and furthermore paves the way for suggestion, automation, and optimization of data preparation tasks. Previous research in the areas of data profiling, data integration, and data cleaning, has focused on extracting and characterizing metadata regarding the content of tabular data files, i.e., about the records and attributes of tables. Content metadata are useful for the latter stages of a preprocessing pipeline, e.g., error correction, duplicate detection, or value normalization, but they require a properly formed tabular input. Therefore, these metadata are not relevant for the early stages of a preparation pipeline, i.e., to correctly parse tables out of files. In this dissertation, we turn our focus to what we call the structure of a tabular data file, i.e., the set of characters within a file that do not represent data values but are required to parse and understand the content of the file. We provide three different approaches to represent file structure, an explicit representation based on context-free grammars; an implicit representation based on file-wise similarity; and a learned representation based on machine learning. In our first contribution, we use the grammar-based representation to characterize a set of over 3000 real-world csv files and identify multiple structural issues that let files deviate from the csv standard, e.g., by having inconsistent delimiters or containing multiple tables. We leverage our learnings about real-world files and propose Pollock, a benchmark to test how well systems parse csv files that have a non-standard structure, without any previous preparation. We report on our experiments on using Pollock to evaluate the performance of 16 real-world data management systems. Following, we characterize the structure of files implicitly, by defining a measure of structural similarity for file pairs. We design a novel algorithm to compute this measure, which is based on a graph representation of the files' content. We leverage this algorithm and propose Mondrian, a graphical system to assist users in identifying layout templates in a dataset, classes of files that have the same structure, and therefore can be prepared by applying the same preparation pipeline. Finally, we introduce MaGRiTTE, a novel architecture that uses self-supervised learning to automatically learn structural representations of files in the form of vectorial embeddings at three different levels: cell level, row level, and file level. We experiment with the application of structural embeddings for several tasks, namely dialect detection, row classification, and data preparation efforts estimation. Our experimental results show that structural metadata, either identified explicitly on parsing grammars, derived implicitly as file-wise similarity, or learned with the help of machine learning architectures, is fundamental to automate several tasks, to scale up preparation to large quantities of files, and to provide repeatable preparation pipelines.}, language = {en} } @phdthesis{Huegle2024, author = {Huegle, Johannes}, title = {Causal discovery in practice: Non-parametric conditional independence testing and tooling for causal discovery}, doi = {10.25932/publishup-63582}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-635820}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 156}, year = {2024}, abstract = {Knowledge about causal structures is crucial for decision support in various domains. For example, in discrete manufacturing, identifying the root causes of failures and quality deviations that interrupt the highly automated production process requires causal structural knowledge. However, in practice, root cause analysis is usually built upon individual expert knowledge about associative relationships. But, "correlation does not imply causation", and misinterpreting associations often leads to incorrect conclusions. Recent developments in methods for causal discovery from observational data have opened the opportunity for a data-driven examination. Despite its potential for data-driven decision support, omnipresent challenges impede causal discovery in real-world scenarios. In this thesis, we make a threefold contribution to improving causal discovery in practice. (1) The growing interest in causal discovery has led to a broad spectrum of methods with specific assumptions on the data and various implementations. Hence, application in practice requires careful consideration of existing methods, which becomes laborious when dealing with various parameters, assumptions, and implementations in different programming languages. Additionally, evaluation is challenging due to the lack of ground truth in practice and limited benchmark data that reflect real-world data characteristics. To address these issues, we present a platform-independent modular pipeline for causal discovery and a ground truth framework for synthetic data generation that provides comprehensive evaluation opportunities, e.g., to examine the accuracy of causal discovery methods in case of inappropriate assumptions. (2) Applying constraint-based methods for causal discovery requires selecting a conditional independence (CI) test, which is particularly challenging in mixed discrete-continuous data omnipresent in many real-world scenarios. In this context, inappropriate assumptions on the data or the commonly applied discretization of continuous variables reduce the accuracy of CI decisions, leading to incorrect causal structures. Therefore, we contribute a non-parametric CI test leveraging k-nearest neighbors methods and prove its statistical validity and power in mixed discrete-continuous data, as well as the asymptotic consistency when used in constraint-based causal discovery. An extensive evaluation of synthetic and real-world data shows that the proposed CI test outperforms state-of-the-art approaches in the accuracy of CI testing and causal discovery, particularly in settings with low sample sizes. (3) To show the applicability and opportunities of causal discovery in practice, we examine our contributions in real-world discrete manufacturing use cases. For example, we showcase how causal structural knowledge helps to understand unforeseen production downtimes or adds decision support in case of failures and quality deviations in automotive body shop assembly lines.}, language = {en} } @phdthesis{Halfpap2024, author = {Halfpap, Stefan}, title = {Integer linear programming-based heuristics for partially replicated database clusters and selecting indexes}, doi = {10.25932/publishup-63361}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-633615}, school = {Universit{\"a}t Potsdam}, pages = {iii, 185}, year = {2024}, abstract = {Column-oriented database systems can efficiently process transactional and analytical queries on a single node. However, increasing or peak analytical loads can quickly saturate single-node database systems. Then, a common scale-out option is using a database cluster with a single primary node for transaction processing and read-only replicas. Using (the naive) full replication, queries are distributed among nodes independently of the accessed data. This approach is relatively expensive because all nodes must store all data and apply all data modifications caused by inserts, deletes, or updates. In contrast to full replication, partial replication is a more cost-efficient implementation: Instead of duplicating all data to all replica nodes, partial replicas store only a subset of the data while being able to process a large workload share. Besides lower storage costs, partial replicas enable (i) better scaling because replicas must potentially synchronize only subsets of the data modifications and thus have more capacity for read-only queries and (ii) better elasticity because replicas have to load less data and can be set up faster. However, splitting the overall workload evenly among the replica nodes while optimizing the data allocation is a challenging assignment problem. The calculation of optimized data allocations in a partially replicated database cluster can be modeled using integer linear programming (ILP). ILP is a common approach for solving assignment problems, also in the context of database systems. Because ILP is not scalable, existing approaches (also for calculating partial allocations) often fall back to simple (e.g., greedy) heuristics for larger problem instances. Simple heuristics may work well but can lose optimization potential. In this thesis, we present optimal and ILP-based heuristic programming models for calculating data fragment allocations for partially replicated database clusters. Using ILP, we are flexible to extend our models to (i) consider data modifications and reallocations and (ii) increase the robustness of allocations to compensate for node failures and workload uncertainty. We evaluate our approaches for TPC-H, TPC-DS, and a real-world accounting workload and compare the results to state-of-the-art allocation approaches. Our evaluations show significant improvements for varied allocation's properties: Compared to existing approaches, we can, for example, (i) almost halve the amount of allocated data, (ii) improve the throughput in case of node failures and workload uncertainty while using even less memory, (iii) halve the costs of data modifications, and (iv) reallocate less than 90\% of data when adding a node to the cluster. Importantly, we can calculate the corresponding ILP-based heuristic solutions within a few seconds. Finally, we demonstrate that the ideas of our ILP-based heuristics are also applicable to the index selection problem.}, language = {en} } @inproceedings{RojahnGronau2024, author = {Rojahn, Marcel and Gronau, Norbert}, title = {Openness indicators for the evaluation of digital platforms between the launch and maturity phase}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {4516 -- 4525}, year = {2024}, abstract = {In recent years, the evaluation of digital platforms has become an important focus in the field of information systems science. The identification of influential indicators that drive changes in digital platforms, specifically those related to openness, is still an unresolved issue. This paper addresses the challenge of identifying measurable indicators and characterizing the transition from launch to maturity in digital platforms. It proposes a systematic analytical approach to identify relevant openness indicators for evaluation purposes. The main contributions of this study are the following (1) the development of a comprehensive procedure for analyzing indicators, (2) the categorization of indicators as evaluation metrics within a multidimensional grid-box model, (3) the selection and evaluation of relevant indicators, (4) the identification and assessment of digital platform architectures during the launch-to-maturity transition, and (5) the evaluation of the applicability of the conceptualization and design process for digital platform evaluation.}, language = {en} } @phdthesis{Richly2024, author = {Richly, Keven}, title = {Memory-efficient data management for spatio-temporal applications}, doi = {10.25932/publishup-63547}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-635473}, school = {Universit{\"a}t Potsdam}, pages = {xii, 181}, year = {2024}, abstract = {The wide distribution of location-acquisition technologies means that large volumes of spatio-temporal data are continuously being accumulated. Positioning systems such as GPS enable the tracking of various moving objects' trajectories, which are usually represented by a chronologically ordered sequence of observed locations. The analysis of movement patterns based on detailed positional information creates opportunities for applications that can improve business decisions and processes in a broad spectrum of industries (e.g., transportation, traffic control, or medicine). Due to the large data volumes generated in these applications, the cost-efficient storage of spatio-temporal data is desirable, especially when in-memory database systems are used to achieve interactive performance requirements. To efficiently utilize the available DRAM capacities, modern database systems support various tuning possibilities to reduce the memory footprint (e.g., data compression) or increase performance (e.g., additional indexes structures). By considering horizontal data partitioning, we can independently apply different tuning options on a fine-grained level. However, the selection of cost and performance-balancing configurations is challenging, due to the vast number of possible setups consisting of mutually dependent individual decisions. In this thesis, we introduce multiple approaches to improve spatio-temporal data management by automatically optimizing diverse tuning options for the application-specific access patterns and data characteristics. Our contributions are as follows: (1) We introduce a novel approach to determine fine-grained table configurations for spatio-temporal workloads. Our linear programming (LP) approach jointly optimizes the (i) data compression, (ii) ordering, (iii) indexing, and (iv) tiering. We propose different models which address cost dependencies at different levels of accuracy to compute optimized tuning configurations for a given workload, memory budgets, and data characteristics. To yield maintainable and robust configurations, we further extend our LP-based approach to incorporate reconfiguration costs as well as optimizations for multiple potential workload scenarios. (2) To optimize the storage layout of timestamps in columnar databases, we present a heuristic approach for the workload-driven combined selection of a data layout and compression scheme. By considering attribute decomposition strategies, we are able to apply application-specific optimizations that reduce the memory footprint and improve performance. (3) We introduce an approach that leverages past trajectory data to improve the dispatch processes of transportation network companies. Based on location probabilities, we developed risk-averse dispatch strategies that reduce critical delays. (4) Finally, we used the use case of a transportation network company to evaluate our database optimizations on a real-world dataset. We demonstrate that workload-driven fine-grained optimizations allow us to reduce the memory footprint (up to 71\% by equal performance) or increase the performance (up to 90\% by equal memory size) compared to established rule-based heuristics. Individually, our contributions provide novel approaches to the current challenges in spatio-temporal data mining and database research. Combining them allows in-memory databases to store and process spatio-temporal data more cost-efficiently.}, language = {en} } @phdthesis{Taleb2024, author = {Taleb, Aiham}, title = {Self-supervised deep learning methods for medical image analysis}, doi = {10.25932/publishup-64408}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-644089}, school = {Universit{\"a}t Potsdam}, pages = {xii, 171}, year = {2024}, abstract = {Deep learning has seen widespread application in many domains, mainly for its ability to learn data representations from raw input data. Nevertheless, its success has so far been coupled with the availability of large annotated (labelled) datasets. This is a requirement that is difficult to fulfil in several domains, such as in medical imaging. Annotation costs form a barrier in extending deep learning to clinically-relevant use cases. The labels associated with medical images are scarce, since the generation of expert annotations of multimodal patient data at scale is non-trivial, expensive, and time-consuming. This substantiates the need for algorithms that learn from the increasing amounts of unlabeled data. Self-supervised representation learning algorithms offer a pertinent solution, as they allow solving real-world (downstream) deep learning tasks with fewer annotations. Self-supervised approaches leverage unlabeled samples to acquire generic features about different concepts, enabling annotation-efficient downstream task solving subsequently. Nevertheless, medical images present multiple unique and inherent challenges for existing self-supervised learning approaches, which we seek to address in this thesis: (i) medical images are multimodal, and their multiple modalities are heterogeneous in nature and imbalanced in quantities, e.g. MRI and CT; (ii) medical scans are multi-dimensional, often in 3D instead of 2D; (iii) disease patterns in medical scans are numerous and their incidence exhibits a long-tail distribution, so it is oftentimes essential to fuse knowledge from different data modalities, e.g. genomics or clinical data, to capture disease traits more comprehensively; (iv) Medical scans usually exhibit more uniform color density distributions, e.g. in dental X-Rays, than natural images. Our proposed self-supervised methods meet these challenges, besides significantly reducing the amounts of required annotations. We evaluate our self-supervised methods on a wide array of medical imaging applications and tasks. Our experimental results demonstrate the obtained gains in both annotation-efficiency and performance; our proposed methods outperform many approaches from related literature. Additionally, in case of fusion with genetic modalities, our methods also allow for cross-modal interpretability. In this thesis, not only we show that self-supervised learning is capable of mitigating manual annotation costs, but also our proposed solutions demonstrate how to better utilize it in the medical imaging domain. Progress in self-supervised learning has the potential to extend deep learning algorithms application to clinical scenarios.}, language = {en} } @inproceedings{MarxBruenkerMirbabaieetal.2024, author = {Marx, Julian and Br{\"u}nker, Felix and Mirbabaie, Milad and Stieglitz, Stefan}, title = {Digital activism on social media}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {7205 -- 7214}, year = {2024}, abstract = {Social media constitute an important arena for public debates and steady interchange of issues relevant to society. To boost their reputation, commercial organizations also engage in political, social, or environmental debates on social media. To engage in this type of digital activism, organizations increasingly utilize the social media profiles of executive employees and other brand ambassadors. However, the relationship between brand ambassadors' digital activism and corporate reputation is only vaguely understood. The results of a qualitative inquiry suggest that digital activism via brand ambassadors can be risky (e.g., creating additional surface for firestorms, financial loss) and rewarding (e.g., emitting authenticity, employing 'megaphones' for industry change) at the same time. The paper informs both scholarship and practitioners about strategic trade-offs that need to be considered when employing brand ambassadors for digital activism.}, language = {en} } @inproceedings{MirbabaieRieskampHofeditzetal.2024, author = {Mirbabaie, Milad and Rieskamp, Jonas and Hofeditz, Lennart and Stieglitz, Stefan}, title = {Breaking down barriers}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {672 -- 681}, year = {2024}, abstract = {Many researchers hesitate to provide full access to their datasets due to a lack of knowledge about research data management (RDM) tools and perceived fears, such as losing the value of one's own data. Existing tools and approaches often do not take into account these fears and missing knowledge. In this study, we examined how conversational agents (CAs) can provide a natural way of guidance through RDM processes and nudge researchers towards more data sharing. This work offers an online experiment in which researchers interacted with a CA on a self-developed RDM platform and a survey on participants' data sharing behavior. Our findings indicate that the presence of a guiding and enlightening CA on an RDM platform has a constructive influence on both the intention to share data and the actual behavior of data sharing. Notably, individual factors do not appear to impede or hinder this effect.}, language = {en} }