@misc{FichteTruszczynskiWoltran2015, author = {Fichte, Johannes Klaus and Truszczynski, Miroslaw and Woltran, Stefan}, title = {Dual-normal logic programs}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {585}, issn = {1866-8372}, doi = {10.25932/publishup-41449}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414490}, pages = {16}, year = {2015}, abstract = {Disjunctive Answer Set Programming is a powerful declarative programming paradigm with complexity beyond NP. Identifying classes of programs for which the consistency problem is in NP is of interest from the theoretical standpoint and can potentially lead to improvements in the design of answer set programming solvers. One of such classes consists of dual-normal programs, where the number of positive body atoms in proper rules is at most one. Unlike other classes of programs, dual-normal programs have received little attention so far. In this paper we study this class. We relate dual-normal programs to propositional theories and to normal programs by presenting several inter-translations. With the translation from dual-normal to normal programs at hand, we introduce the novel class of body-cycle free programs, which are in many respects dual to head-cycle free programs. We establish the expressive power of dual-normal programs in terms of SE- and UE-models, and compare them to normal programs. We also discuss the complexity of deciding whether dual-normal programs are strongly and uniformly equivalent.}, language = {en} } @misc{ArvidssonKwasniewskiRianoPachonetal.2008, author = {Arvidsson, Samuel Janne and Kwasniewski, Miroslaw and Ria{\~n}o- Pach{\´o}n, Diego Mauricio and Mueller-Roeber, Bernd}, title = {QuantPrime}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {943}, issn = {1866-8372}, doi = {10.25932/publishup-43153}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431531}, pages = {17}, year = {2008}, abstract = {Background Medium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR) assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays. Results Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet http://www.quantprime.de/ or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total), while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii show success rates of designed primer pairs exceeding 96\%. Conclusion QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays.}, language = {en} } @misc{Fandinno2019, author = {Fandinno, Jorge}, title = {Founded (auto)epistemic equilibrium logic satisfies epistemic splitting}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1060}, issn = {1866-8372}, doi = {10.25932/publishup-46968}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469685}, pages = {671 -- 687}, year = {2019}, abstract = {In a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond's original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5.}, language = {en} } @misc{AguadoCabalarFandinnoetal.2019, author = {Aguado, Felicidad and Cabalar, Pedro and Fandinno, Jorge and Pearce, David and Perez, Gilberto and Vidal, Concepcion}, title = {Revisiting explicit negation in answer set programming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1104}, issn = {1866-8372}, doi = {10.25932/publishup-46969}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469697}, pages = {908 -- 924}, year = {2019}, abstract = {A common feature in Answer Set Programming is the use of a second negation, stronger than default negation and sometimes called explicit, strong or classical negation. This explicit negation is normally used in front of atoms, rather than allowing its use as a regular operator. In this paper we consider the arbitrary combination of explicit negation with nested expressions, as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new syntax and then prove that it can be captured by an extension of Equilibrium Logic with this second negation. We study some properties of this variant and compare to the already known combination of Equilibrium Logic with Nelson's strong negation.}, language = {en} } @misc{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1062}, issn = {1866-8372}, doi = {10.25932/publishup-47052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470527}, pages = {18}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @misc{BoumaHendriks2011, author = {Bouma, Gerlof J. and Hendriks, Petra}, title = {Partial word order freezing in Dutch}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {625}, issn = {1866-8364}, doi = {10.25932/publishup-43049}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430496}, pages = {23}, year = {2011}, abstract = {Dutch allows for variation as to whether the first position in the sentence is occupied by the subject or by some other constituent, such as the direct object. In particular situations, however, this commonly observed variation in word order is 'frozen' and only the subject appears in first position. We hypothesize that this partial freezing of word order in Dutch can be explained from the dependence of the speaker's choice of word order on the hearer's interpretation of this word order. A formal model of this interaction between the speaker's perspective and the hearer's perspective is presented in terms of bidirectional Optimality Theory. Empirical predictions of this model regarding the interaction between word order and definiteness are confirmed by a quantitative corpus study.}, language = {en} } @misc{MargariaKubczakSteffen2008, author = {Margaria, Tiziana and Kubczak, Christian and Steffen, Bernhard}, title = {Bio-jETI}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {822}, doi = {10.25932/publishup-42886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428868}, pages = {19}, year = {2008}, abstract = {Background: With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods: Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions: As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.}, language = {en} } @misc{DworschakGrellNikiforovaetal.2008, author = {Dworschak, Steve and Grell, Susanne and Nikiforova, Victoria J. and Schaub, Torsten H. and Selbig, Joachim}, title = {Modeling biological networks by action languages via answer set programming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {843}, issn = {1866-8372}, doi = {10.25932/publishup-42984}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429846}, pages = {47}, year = {2008}, abstract = {We describe an approach to modeling biological networks by action languages via answer set programming. To this end, we propose an action language for modeling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming, an efficient Boolean Constraint Programming Paradigm. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage.}, language = {en} } @misc{RepsilberKernTelaaretal.2010, author = {Repsilber, Dirk and Kern, Sabine and Telaar, Anna and Walzl, Gerhard and Black, Gillian F. and Selbig, Joachim and Parida, Shreemanta K. and Kaufmann, Stefan H. E. and Jacobsen, Marc}, title = {Biomarker discovery in heterogeneous tissue samples}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {854}, issn = {1866-8372}, doi = {10.25932/publishup-42934}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429343}, pages = {17}, year = {2010}, abstract = {Background: For heterogeneous tissues, such as blood, measurements of gene expression are confounded by relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification in the difficult scenario of reversely regulated genes. This would be of importance for the identification of candidate biomarkers in heterogeneous tissues. Results: Experimental data and simulation studies involving noise parameters estimated from these data revealed that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal. We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of single samples, as a prerequisite for a deconfounding-based classification approach. Classification cross-validation errors with and without using deconfounding results are reported as well as sample-size dependencies. Implementation of the algorithm, simulation and analysis scripts are available. Conclusions: The deconfounding algorithm without decorrelation using quantile normalization on non-log data is proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular diagnosis and prediction in biomedicine, in realistically noisy conditions and with moderate sample sizes.}, language = {en} } @misc{GebserKaminskiSchaub2011, author = {Gebser, Martin and Kaminski, Roland and Schaub, Torsten H.}, title = {Complex optimization in answer set programming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {554}, issn = {1866-8372}, doi = {10.25932/publishup-41243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412436}, pages = {19}, year = {2011}, abstract = {Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications.}, language = {en} }