@book{KrauseGiese2012, author = {Krause, Christian and Giese, Holger}, title = {Quantitative modeling and analysis of service-oriented real-time systems using interval probabilistic timed automata}, publisher = {Universit{\"a}tsverlah Potsdam}, address = {Potsdam}, isbn = {978-3-86956-171-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57845}, publisher = {Universit{\"a}t Potsdam}, pages = {45}, year = {2012}, abstract = {One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properties for a restricted class of service-oriented real-time systems using formal methods. To properly motivate the choice for the used approach, we devise a requirements catalogue for the modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used models and require distinguished analysis approaches. The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on the outlined requirements, we give evidence that this model provides both enough expressiveness for a realistic and modular specifiation of the targeted class of systems, and suitable formal methods for analyzing properties, such as safety and reliability properties in a quantitative manner. As technical means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic time-bounded reachability analysis and computation of expected reachability rewards and costs. To carry out the quantitative analysis using probabilistic model checking, we developed an extension of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking and computation of expected rewards and costs. We discuss the performance of our extended version of Prism and compare the interval-based IPTA approach to models with fixed probabilities.}, language = {en} } @book{GieseHildebrandtNeumannetal.2012, author = {Giese, Holger and Hildebrandt, Stephan and Neumann, Stefan and W{\"a}tzoldt, Sebastian}, title = {Industrial case study on the integration of SysML and AUTOSAR with triple graph grammars}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-191-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60184}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 51}, year = {2012}, abstract = {During the overall development of complex engineering systems different modeling notations are employed. For example, in the domain of automotive systems system engineering models are employed quite early to capture the requirements and basic structuring of the entire system, while software engineering models are used later on to describe the concrete software architecture. Each model helps in addressing the specific design issue with appropriate notations and at a suitable level of abstraction. However, when we step forward from system design to the software design, the engineers have to ensure that all decisions captured in the system design model are correctly transferred to the software engineering model. Even worse, when changes occur later on in either model, today the consistency has to be reestablished in a cumbersome manual step. In this report, we present in an extended version of [Holger Giese, Stefan Neumann, and Stephan Hildebrandt. Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent. In Gregor Engels, Claus Lewerentz, Wilhelm Sch{\"a}fer, Andy Sch{\"u}rr, and B. Westfechtel, editors, Graph Transformations and Model Driven Enginering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, volume 5765 of Lecture Notes in Computer Science, pages 555-579. Springer Berlin / Heidelberg, 2010.] how model synchronization and consistency rules can be applied to automate this task and ensure that the different models are kept consistent. We also introduce a general approach for model synchronization. Besides synchronization, the approach consists of tool adapters as well as consistency rules covering the overlap between the synchronized parts of a model and the rest. We present the model synchronization algorithm based on triple graph grammars in detail and further exemplify the general approach by means of a model synchronization solution between system engineering models in SysML and software engineering models in AUTOSAR which has been developed for an industrial partner. In the appendix as extension to [19] the meta-models and all TGG rules for the SysML to AUTOSAR model synchronization are documented.}, language = {en} } @book{NeumannGiese2013, author = {Neumann, Stefan and Giese, Holger}, title = {Scalable compatibility for embedded real-time components via language progressive timed automata}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-226-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63853}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 67}, year = {2013}, abstract = {The proper composition of independently developed components of an embedded real- time system is complicated due to the fact that besides the functional behavior also the non-functional properties and in particular the timing have to be compatible. Nowadays related compatibility problems have to be addressed in a cumbersome integration and configuration phase at the end of the development process, that in the worst case may fail. Therefore, a number of formal approaches have been developed, which try to guide the upfront decomposition of the embedded real-time system into components such that integration problems related to timing properties can be excluded and that suitable configurations can be found. However, the proposed solutions require a number of strong assumptions that can be hardly fulfilled or the required analysis does not scale well. In this paper, we present an approach based on timed automata that can provide the required guarantees for the later integration without strong assumptions, which are difficult to match in practice. The approach provides a modular reasoning scheme that permits to establish the required guarantees for the integration employing only local checks, which therefore also scales. It is also possible to determine potential configuration settings by means of timed game synthesis.}, language = {de} } @book{HebigGieseBatoulisetal.2015, author = {Hebig, Regina and Giese, Holger and Batoulis, Kimon and Langer, Philipp and Zamani Farahani, Armin and Yao, Gary and Wolowyk, Mychajlo}, title = {Development of AUTOSAR standard documents at Carmeq GmbH}, number = {92}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-317-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-71535}, publisher = {Universit{\"a}t Potsdam}, pages = {52}, year = {2015}, abstract = {This report documents the captured MDE history of Carmeq GmbH, in context of the project Evolution of MDE Settings in Practice. The goal of the project is the elicitation of MDE approaches and their evolution.}, language = {en} } @article{BarkowskyGiese2020, author = {Barkowsky, Matthias and Giese, Holger}, title = {Hybrid search plan generation for generalized graph pattern matching}, series = {Journal of logical and algebraic methods in programming}, volume = {114}, journal = {Journal of logical and algebraic methods in programming}, publisher = {Elsevier}, address = {New York}, issn = {2352-2208}, doi = {10.1016/j.jlamp.2020.100563}, pages = {29}, year = {2020}, abstract = {In recent years, the increased interest in application areas such as social networks has resulted in a rising popularity of graph-based approaches for storing and processing large amounts of interconnected data. To extract useful information from the growing network structures, efficient querying techniques are required. In this paper, we propose an approach for graph pattern matching that allows a uniform handling of arbitrary constraints over the query vertices. Our technique builds on a previously introduced matching algorithm, which takes concrete host graph information into account to dynamically adapt the employed search plan during query execution. The dynamic algorithm is combined with an existing static approach for search plan generation, resulting in a hybrid technique which we further extend by a more sophisticated handling of filtering effects caused by constraint checks. We evaluate the presented concepts empirically based on an implementation for our graph pattern matching tool, the Story Diagram Interpreter, with queries and data provided by the LDBC Social Network Benchmark. Our results suggest that the hybrid technique may improve search efficiency in several cases, and rarely reduces efficiency.}, language = {en} } @book{BeckerGieseNeumann2009, author = {Becker, Basil and Giese, Holger and Neumann, Stefan}, title = {Correct dynamic service-oriented architectures : modeling and compositional verification with dynamic collaborations}, organization = {System Analysis and Modeling Group}, isbn = {978-3-940793-91-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30473}, publisher = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Service-oriented modeling employs collaborations to capture the coordination of multiple roles in form of service contracts. In case of dynamic collaborations the roles may join and leave the collaboration at runtime and therefore complex structural dynamics can result, which makes it very hard to ensure their correct and safe operation. We present in this paper our approach for modeling and verifying such dynamic collaborations. Modeling is supported using a well-defined subset of UML class diagrams, behavioral rules for the structural dynamics, and UML state machines for the role behavior. To be also able to verify the resulting service-oriented systems, we extended our former results for the automated verification of systems with structural dynamics [7, 8] and developed a compositional reasoning scheme, which enables the reuse of verification results. We outline our approach using the example of autonomous vehicles that use such dynamic collaborations via ad-hoc networking to coordinate and optimize their joint behavior.}, language = {en} } @misc{GieseHenklerHirsch2017, author = {Giese, Holger and Henkler, Stefan and Hirsch, Martin}, title = {A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402896}, pages = {34}, year = {2017}, abstract = {Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, M ECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented.}, language = {en} } @book{GieseHildebrandtLambers2010, author = {Giese, Holger and Hildebrandt, Stephan and Lambers, Leen}, title = {Toward bridging the gap between formal semantics and implementation of triple graph grammars}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-078-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45219}, publisher = {Universit{\"a}t Potsdam}, pages = {26}, year = {2010}, abstract = {The correctness of model transformations is a crucial element for the model-driven engineering of high quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the employed implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches it is usually not really clear under which constraints particular implementations are really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. Whereas the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static analysis can be employed to guarantee these criteria.}, language = {en} } @book{GieseHildebrandt2009, author = {Giese, Holger and Hildebrandt, Stephan}, title = {Efficient model synchronization of large-scale models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-84-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29281}, publisher = {Universit{\"a}t Potsdam}, pages = {27}, year = {2009}, abstract = {Model-driven software development requires techniques to consistently propagate modifications between different related models to realize its full potential. For large-scale models, efficiency is essential in this respect. In this paper, we present an improved model synchronization algorithm based on triple graph grammars that is highly efficient and, therefore, can also synchronize large-scale models sufficiently fast. We can show, that the overall algorithm has optimal complexity if it is dominating the rule matching and further present extensive measurements that show the efficiency of the presented model transformation and synchronization technique.}, language = {en} } @book{BarkowskyGiese2023, author = {Barkowsky, Matthias and Giese, Holger}, title = {Modular and incremental global model management with extended generalized discrimination networks}, number = {154}, isbn = {978-3-86956-555-2}, issn = {1613-5652}, doi = {10.25932/publishup-57396}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573965}, publisher = {Universit{\"a}t Potsdam}, pages = {63 -- 63}, year = {2023}, abstract = {Complex projects developed under the model-driven engineering paradigm nowadays often involve several interrelated models, which are automatically processed via a multitude of model operations. Modular and incremental construction and execution of such networks of models and model operations are required to accommodate efficient development with potentially large-scale models. The underlying problem is also called Global Model Management. In this report, we propose an approach to modular and incremental Global Model Management via an extension to the existing technique of Generalized Discrimination Networks (GDNs). In addition to further generalizing the notion of query operations employed in GDNs, we adapt the previously query-only mechanism to operations with side effects to integrate model transformation and model synchronization. We provide incremental algorithms for the execution of the resulting extended Generalized Discrimination Networks (eGDNs), as well as a prototypical implementation for a number of example eGDN operations. Based on this prototypical implementation, we experiment with an application scenario from the software development domain to empirically evaluate our approach with respect to scalability and conceptually demonstrate its applicability in a typical scenario. Initial results confirm that the presented approach can indeed be employed to realize efficient Global Model Management in the considered scenario.}, language = {en} }