@misc{SeewannVerwiebeBuderetal.2022, author = {Seewann, Lena and Verwiebe, Roland and Buder, Claudia and Fritsch, Nina-Sophie}, title = {"Broadcast your gender."}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {152}, issn = {1867-5808}, doi = {10.25932/publishup-56628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566287}, pages = {16}, year = {2022}, abstract = {Social media platforms provide a large array of behavioral data relevant to social scientific research. However, key information such as sociodemographic characteristics of agents are often missing. This paper aims to compare four methods of classifying social attributes from text. Specifically, we are interested in estimating the gender of German social media creators. By using the example of a random sample of 200 YouTube channels, we compare several classification methods, namely (1) a survey among university staff, (2) a name dictionary method with the World Gender Name Dictionary as a reference list, (3) an algorithmic approach using the website gender-api.com, and (4) a Multinomial Na{\"i}ve Bayes (MNB) machine learning technique. These different methods identify gender attributes based on YouTube channel names and descriptions in German but are adaptable to other languages. Our contribution will evaluate the share of identifiable channels, accuracy and meaningfulness of classification, as well as limits and benefits of each approach. We aim to address methodological challenges connected to classifying gender attributes for YouTube channels as well as related to reinforcing stereotypes and ethical implications.}, language = {en} } @misc{LadleifWeske2021, author = {Ladleif, Jan and Weske, Mathias}, title = {Which Event Happened First? Deferred Choice on Blockchain Using Oracles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, volume = {4}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-55068}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550681}, pages = {1 -- 16}, year = {2021}, abstract = {First come, first served: Critical choices between alternative actions are often made based on events external to an organization, and reacting promptly to their occurrence can be a major advantage over the competition. In Business Process Management (BPM), such deferred choices can be expressed in process models, and they are an important aspect of process engines. Blockchain-based process execution approaches are no exception to this, but are severely limited by the inherent properties of the platform: The isolated environment prevents direct access to external entities and data, and the non-continual runtime based entirely on atomic transactions impedes the monitoring and detection of events. In this paper we provide an in-depth examination of the semantics of deferred choice, and transfer them to environments such as the blockchain. We introduce and compare several oracle architectures able to satisfy certain requirements, and show that they can be implemented using state-of-the-art blockchain technology.}, language = {en} } @misc{BensonMakaitRabl2021, author = {Benson, Lawrence and Makait, Hendrik and Rabl, Tilmann}, title = {Viper}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {9}, issn = {2150-8097}, doi = {10.25932/publishup-55966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559664}, pages = {15}, year = {2021}, abstract = {Key-value stores (KVSs) have found wide application in modern software systems. For persistence, their data resides in slow secondary storage, which requires KVSs to employ various techniques to increase their read and write performance from and to the underlying medium. Emerging persistent memory (PMem) technologies offer data persistence at close-to-DRAM speed, making them a promising alternative to classical disk-based storage. However, simply drop-in replacing existing storage with PMem does not yield good results, as block-based access behaves differently in PMem than on disk and ignores PMem's byte addressability, layout, and unique performance characteristics. In this paper, we propose three PMem-specific access patterns and implement them in a hybrid PMem-DRAM KVS called Viper. We employ a DRAM-based hash index and a PMem-aware storage layout to utilize the random-write speed of DRAM and efficient sequential-write performance PMem. Our evaluation shows that Viper significantly outperforms existing KVSs for core KVS operations while providing full data persistence. Moreover, Viper outperforms existing PMem-only, hybrid, and disk-based KVSs by 4-18x for write workloads, while matching or surpassing their get performance.}, language = {en} } @misc{PulkkinenMetzler2015, author = {Pulkkinen, Otto and Metzler, Ralf}, title = {Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86632}, year = {2015}, abstract = {Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.}, language = {en} } @misc{LutherTiberiusBrem2020, author = {Luther, Laura and Tiberius, Victor and Brem, Alexander}, title = {User experience (UX) in business, management, and psychology}, series = {Postprints der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {136}, issn = {1867-5808}, doi = {10.25932/publishup-47253}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472534}, pages = {21}, year = {2020}, abstract = {User Experience (UX) describes the holistic experience of a user before, during, and after interaction with a platform, product, or service. UX adds value and attraction to their sole functionality and is therefore highly relevant for firms. The increased interest in UX has produced a vast amount of scholarly research since 1983. The research field is, therefore, complex and scattered. Conducting a bibliometric analysis, we aim at structuring the field quantitatively and rather abstractly. We employed citation analyses, co-citation analyses, and content analyses to evaluate productivity and impact of extant research. We suggest that future research should focus more on business and management related topics.}, language = {en} } @misc{HempelKoseskaNikoloskietal.2017, author = {Hempel, Sabrina and Koseska, Aneta and Nikoloski, Zoran and Kurths, J{\"u}rgen}, title = {Unraveling gene regulatory networks from time-resolved gene expression data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400924}, pages = {26}, year = {2017}, abstract = {Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study. Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices.}, language = {en} } @misc{AndorfGaertnerSteinfathetal.2008, author = {Andorf, Sandra and G{\"a}rtner, Tanja and Steinfath, Matthias and Witucka-Wall, Hanna and Altmann, Thomas and Repsilber, Dirk}, title = {Towards systems biology of heterosis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {949}, issn = {1866-8372}, doi = {10.25932/publishup-43627}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436274}, pages = {14}, year = {2008}, abstract = {We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix) is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity—a known phenomenon in the literature.}, language = {en} } @misc{WrightWachsHarper2018, author = {Wright, Michelle F. and Wachs, Sebastian and Harper, Bridgette D.}, title = {The moderation of empathy in the longitudinal association between witnessing cyberbullying, depression, and anxiety}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {689}, issn = {1866-8364}, doi = {10.25932/publishup-47050}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470505}, pages = {16}, year = {2018}, abstract = {While the role of and consequences of being a bystander to face-to-face bullying has received some attention in the literature, to date, little is known about the effects of being a bystander to cyberbullying. It is also unknown how empathy might impact the negative consequences associated with being a bystander of cyberbullying. The present study focused on examining the longitudinal association between bystander of cyberbullying depression, and anxiety, and the moderating role of empathy in the relationship between bystander of cyberbullying and subsequent depression and anxiety. There were 1,090 adolescents (M-age = 12.19; 50\% female) from the United States included at Time 1, and they completed questionnaires on empathy, cyberbullying roles (bystander, perpetrator, victim), depression, and anxiety. One year later, at Time 2, 1,067 adolescents (M-age = 13.76; 51\% female) completed questionnaires on depression and anxiety. Results revealed a positive association between bystander of cyberbullying and depression and anxiety. Further, empathy moderated the positive relationship between bystander of cyberbullying and depression, but not for anxiety. Implications for intervention and prevention programs are discussed.}, language = {en} } @misc{HollmannFrohmeEndrullatetal.2020, author = {Hollmann, Susanne and Frohme, Marcus and Endrullat, Christoph and Kremer, Andreas and D'Elia, Domenica and Regierer, Babette and Nechyporenko, Alina}, title = {Ten simple rules on how to write a standard operating procedure}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525877}, pages = {12}, year = {2020}, abstract = {Research publications and data nowadays should be publicly available on the internet and, theoretically, usable for everyone to develop further research, products, or services. The long-term accessibility of research data is, therefore, fundamental in the economy of the research production process. However, the availability of data is not sufficient by itself, but also their quality must be verifiable. Measures to ensure reuse and reproducibility need to include the entire research life cycle, from the experimental design to the generation of data, quality control, statistical analysis, interpretation, and validation of the results. Hence, high-quality records, particularly for providing a string of documents for the verifiable origin of data, are essential elements that can act as a certificate for potential users (customers). These records also improve the traceability and transparency of data and processes, therefore, improving the reliability of results. Standards for data acquisition, analysis, and documentation have been fostered in the last decade driven by grassroot initiatives of researchers and organizations such as the Research Data Alliance (RDA). Nevertheless, what is still largely missing in the life science academic research are agreed procedures for complex routine research workflows. Here, well-crafted documentation like standard operating procedures (SOPs) offer clear direction and instructions specifically designed to avoid deviations as an absolute necessity for reproducibility. Therefore, this paper provides a standardized workflow that explains step by step how to write an SOP to be used as a starting point for appropriate research documentation.}, language = {en} } @misc{KonigorskiWernickeSlosareketal.2023, author = {Konigorski, Stefan and Wernicke, Sarah and Slosarek, Tamara and Zenner, Alexander Maximilian and Strelow, Nils and Ruether, Darius Ferenc and Henschel, Florian and Manaswini, Manisha and Pottb{\"a}cker, Fabian and Edelman, Jonathan Antonio and Owoyele, Babajide and Danieletto, Matteo and Golden, Eddye and Zweig, Micol and Nadkarni, Girish N. and B{\"o}ttinger, Erwin}, title = {StudyU: A Platform for Designing and Conducting Innovative Digital N-of-1 Trials}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {12}, doi = {10.25932/publishup-58037}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-580370}, pages = {12}, year = {2023}, abstract = {N-of-1 trials are the gold standard study design to evaluate individual treatment effects and derive personalized treatment strategies. Digital tools have the potential to initiate a new era of N-of-1 trials in terms of scale and scope, but fully functional platforms are not yet available. Here, we present the open source StudyU platform, which includes the StudyU Designer and StudyU app. With the StudyU Designer, scientists are given a collaborative web application to digitally specify, publish, and conduct N-of-1 trials. The StudyU app is a smartphone app with innovative user-centric elements for participants to partake in trials published through the StudyU Designer to assess the effects of different interventions on their health. Thereby, the StudyU platform allows clinicians and researchers worldwide to easily design and conduct digital N-of-1 trials in a safe manner. We envision that StudyU can change the landscape of personalized treatments both for patients and healthy individuals, democratize and personalize evidence generation for self-optimization and medicine, and can be integrated in clinical practice.}, language = {en} }