@article{Curzon2015, author = {Curzon, Paul}, title = {Unplugged Computational Thinking for Fun}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82575}, pages = {15 -- 27}, year = {2015}, abstract = {Computational thinking is a fundamental skill set that is learned by studying Informatics and ICT. We argue that its core ideas can be introduced in an inspiring and integrated way to both teachers and students using fun and contextually rich cs4fn 'Computer Science for Fun' stories combined with 'unplugged' activities including games and magic tricks. We also argue that understanding people is an important part of computational thinking. Computational thinking can be fun for everyone when taught in kinaesthetic ways away from technology.}, language = {en} } @article{LutherTiberiusBrem2020, author = {Luther, Laura and Tiberius, Victor and Brem, Alexander}, title = {User experience (UX) in business, management, and psychology}, series = {Multimodal technologies and interaction : open access journal}, volume = {4}, journal = {Multimodal technologies and interaction : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2414-4088}, doi = {10.3390/mti4020018}, pages = {19}, year = {2020}, abstract = {User Experience (UX) describes the holistic experience of a user before, during, and after interaction with a platform, product, or service. UX adds value and attraction to their sole functionality and is therefore highly relevant for firms. The increased interest in UX has produced a vast amount of scholarly research since 1983. The research field is, therefore, complex and scattered. Conducting a bibliometric analysis, we aim at structuring the field quantitatively and rather abstractly. We employed citation analyses, co-citation analyses, and content analyses to evaluate productivity and impact of extant research. We suggest that future research should focus more on business and management related topics.}, language = {en} } @article{ZierisGerstbergerMueller2015, author = {Zieris, Holger and Gerstberger, Herbert and M{\"u}ller, Wolfgang}, title = {Using Arduino-Based Experiments to Integrate Computer Science Education and Natural Science}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82938}, pages = {381 -- 389}, year = {2015}, abstract = {Current curricular trends require teachers in Baden- Wuerttemberg (Germany) to integrate Computer Science (CS) into traditional subjects, such as Physical Science. However, concrete guidelines are missing. To fill this gap, we outline an approach where a microcontroller is used to perform and evaluate measurements in the Physical Science classroom. Using the open-source Arduino platform, we expect students to acquire and develop both CS and Physical Science competencies by using a self-programmed microcontroller. In addition to this combined development of competencies in Physical Science and CS, the subject matter will be embedded in suitable contexts and learning environments, such as weather and climate.}, language = {en} } @article{NylenDoerge2013, author = {Nyl{\´e}n, Aletta and D{\"o}rge, Christina}, title = {Using competencies to structure scientific writing education}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64851}, pages = {33 -- 44}, year = {2013}, abstract = {Scientific writing is an important skill for computer science and computer engineering professionals. In this paper we present a writing concept across the curriculum program directed towards scientific writing. The program is built around a hierarchy of learning outcomes. The hierarchy is constructed through analyzing the learning outcomes in relation to competencies that are needed to fulfill them.}, language = {en} } @article{Kuntzsch2014, author = {Kuntzsch, Christian}, title = {Visualization of data transfer paths}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {140 -- 148}, year = {2014}, abstract = {A workflow for visualizing server connections using the Google Maps API was built in the jABC. It makes use of three basic services: An XML-based IP address geolocation web service, a command line tool and the Static Maps API. The result of the workflow is an URL leading to an image file of a map, showing server connections between a client and a target host.}, language = {en} } @article{Sens2014, author = {Sens, Henriette}, title = {Web-Based map generalization tools put to the test: a jABC workflow}, series = {Process Design for Natural Scientists: an agile model-driven approach}, journal = {Process Design for Natural Scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {175 -- 185}, year = {2014}, abstract = {Geometric generalization is a fundamental concept in the digital mapping process. An increasing amount of spatial data is provided on the web as well as a range of tools to process it. This jABC workflow is used for the automatic testing of web-based generalization services like mapshaper.org by executing its functionality, overlaying both datasets before and after the transformation and displaying them visually in a .tif file. Mostly Web Services and command line tools are used to build an environment where ESRI shapefiles can be uploaded, processed through a chosen generalization service and finally visualized in Irfanview.}, language = {en} } @article{DelgadoKloos2015, author = {Delgado Kloos, Carlos}, title = {What about the Competencies of Educators in the New Era of Digital Education?}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83015}, pages = {435 -- 438}, year = {2015}, abstract = {A lot has been published about the competencies needed by students in the 21st century (Ravenscroft et al., 2012). However, equally important are the competencies needed by educators in the new era of digital education. We review the key competencies for educators in light of the new methods of teaching and learning proposed by Massive Open Online Courses (MOOCs) and their on-campus counterparts, Small Private Online Courses (SPOCs).}, language = {en} } @article{AlSaffar2013, author = {Al-Saffar, Loay Talib Ahmed}, title = {Where girls take the role of boys in CS}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65034}, pages = {149 -- 154}, year = {2013}, abstract = {A survey has been carried out in the Computer Science (CS) department at the University of Baghdad to investigate the attitudes of CS students in a female dominant environment, showing the differences between male and female students in different academic years. We also compare the attitudes of the freshman students of two different cultures (University of Baghdad, Iraq, and the University of Potsdam).}, language = {en} } @article{Schulze2014, author = {Schulze, Gunnar}, title = {Workflow for rapid metagenome analysis}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {88 -- 100}, year = {2014}, abstract = {Analyses of metagenomes in life sciences present new opportunities as well as challenges to the scientific community and call for advanced computational methods and workflows. The large amount of data collected from samples via next-generation sequencing (NGS) technologies render manual approaches to sequence comparison and annotation unsuitable. Rather, fast and efficient computational pipelines are needed to provide comprehensive statistics and summaries and enable the researcher to choose appropriate tools for more specific analyses. The workflow presented here builds upon previous pipelines designed for automated clustering and annotation of raw sequence reads obtained from next-generation sequencing technologies such as 454 and Illumina. Employing specialized algorithms, the sequence reads are processed at three different levels. First, raw reads are clustered at high similarity cutoff to yield clusters which can be exported as multifasta files for further analyses. Independently, open reading frames (ORFs) are predicted from raw reads and clustered at two strictness levels to yield sets of non-redundant sequences and ORF families. Furthermore, single ORFs are annotated by performing searches against the Pfam database}, language = {en} }