@phdthesis{Kueken2020, author = {K{\"u}ken, Anika}, title = {Predictions from constraint-based approaches including enzyme kinetics}, school = {Universit{\"a}t Potsdam}, pages = {116, A-16, B-7, C-8}, year = {2020}, abstract = {The metabolic state of an organism reflects the entire phenotype that is jointly affected by genetic and environmental changes. Due to the complexity of metabolism, system-level modelling approaches have become indispensable tools to obtain new insights into biological functions. In particular, simulation and analysis of metabolic networks using constraint-based modelling approaches have helped the analysis of metabolic fluxes. However, despite ongoing improvements in prediction of reaction flux through a system, approaches to directly predict metabolite concentrations from large-scale metabolic networks remain elusive. In this thesis, we present a computational approach for inferring concentration ranges from genome-scale metabolic models endowed with mass action kinetics. The findings specify a molecular mechanism underling facile control of concentration ranges for components in large-scale metabolic networks. Most importantly, an extended version of the approach can be used to predict concentration ranges without knowledge of kinetic parameters, provided measurements of concentrations in a reference state. We show that the approach is applicable with large-scale kinetic and stoichiometric metabolic models of organisms from different kingdoms of life. By challenging the predictions of concentration ranges in the genome-scale metabolic network of Escherichia coli with real-world data sets, we further demonstrate the prediction power and limitations of the approach. To predict concentration ranges in other species, e.g. model plant species Arabidopsis thaliana, we would rely on estimates of kinetic parameters (i.e. enzyme catalytic rates) since plant-specific enzyme catalytic rates are poorly documented. Using the constraint-based approach of Davidi et al. for estimation of enzyme catalytic rates, we obtain values for 168 plant enzymes. The approach depends on quantitative proteomics data and flux estimates obtained from constraint-based model of plant leaf metabolism integrating maximal rates of selected enzymes, plant-specific constraints on fluxes through canonical pathways, and growth measurements from Arabidopsis thaliana rosette under ten conditions. We demonstrate a low degree of plant enzyme saturation, supported by the agreement between concentrations of nicotinamide adenine dinucleotide, adenosine triphosphate, and glyceraldehyde 3-phosphate, based on our maximal in vivo catalytic rates, and available quantitative metabolomics data. Hence, our results show genome-wide estimation for plant-specific enzyme catalytic rates is feasible. These can now be readily employed to study resource allocation, to predict enzyme and metabolite concentrations using recent constrained-based modelling approaches. Constraint-based methods do not directly account for kinetic mechanisms and corresponding parameters. Therefore, a number of workflows have already been proposed to approximate reaction kinetics and to parameterize genome-scale kinetic models. We present a systems biology strategy to build a fully parameterized large-scale model of Chlamydomonas reinhardtii accounting for microcompartmentalization in the chloroplast stroma. Eukaryotic algae comprise a microcompartment, the pyrenoid, essential for the carbon concentrating mechanism (CCM) that improves their photosynthetic performance. Since the experimental study of the effects of microcompartmentation on metabolic pathways is challenging, we employ our model to investigate compartmentation of fluxes through the Calvin-Benson cycle between pyrenoid and stroma. Our model predicts that ribulose-1,5-bisphosphate, the substrate of Rubisco, and 3-phosphoglycerate, its product, diffuse in and out of the pyrenoid. We also find that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Therefore, our computational approach represents a stepping stone towards understanding of microcompartmentalized CCM in other organisms. This thesis provides novel strategies to use genome-scale metabolic networks to predict and integrate metabolite concentrations. Therefore, the presented approaches represent an important step in broadening the applicability of large-scale metabolic models to a range of biotechnological and medical applications.}, language = {en} } @phdthesis{HashemiRanjbar2023, author = {Hashemi Ranjbar, Seirana}, title = {Plasticity and trade-offs in plant metabolic networks}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2023}, abstract = {A biological trade-off situation denotes the dependence between traits whereby an increase in the value of one of the traits leads to a decrease in the value of at least one of the others. Understanding trade-offs in cellular systems is relevant to understanding the limits and constraints to tuning desired phenotypes. Therefore, it is mainly the case for rates (i.e. fluxes) of biochemical reactions that shape not only molecular traits, like metabolite concentrations but also determine physiological traits, like growth. Intracellular fluxes are the final phenotype from transcriptional and (post)translational regulation. Quantifying intracellular fluxes provides insights into cellular physiology under particular growth conditions and can be used to characterize the metabolic activity of different pathways. However, estimating fluxes from labelling experiments is labour-intensive; therefore, developing approaches to accurately and precisely predict intracellular fluxes is essential. This thesis addresses two main problems: (i) identifying flux trade-offs and (ii) predicting accurate and precise reaction flux at a genome-scale level. To this end, the concept of an absolute flux trade-off is defined, and a constraint-based approach, termed FluTO, was developed to identify absolute flux trade-offs. FluTO is cast as a mixed integer programming approach applied to genome-scale metabolic models of E. coli, S. cerevisiae, and A. thaliana, imposing realistic constraints on growth and nutrient uptake.. The findings showed that trade-offs are not only species-specific but also specific to carbon sources. In addition, we found that different models of a single species have a different number of reactions in trade-offs. We also showed that absolute flux trade-offs depend on the biomass reaction used to model the growth of A. thaliana under different carbon and nitrogen conditions. Findings reflect the strong relation between nitrogen, carbon, and sulphur metabolisms in the leaves of C3 plants. The concept of relative trade-offs was introduced to further study trade-offs in metabolic networks. A constraint-based approach, FluTOr, was proposed to identify reactions whose fluxes are in relative trade-off concerning an optimized fitness-related cellular task, like growth. FluTOr was employed to find the relative flux trade-offsin the genome-scale metabolic networks of E. coli, S. cerevisiae, and A. thaliana. The results showed that in contrast to the A. thaliana model, the relative trade-offs in the two microorganisms depend on the carbon source, reflecting the differences in the underlying metabolic network. Furthermore, applying FluTOr also showed that reactions that participated in relative trade-offs were implicated in cofactor biosynthesis in the two microorganisms. Prediction of reaction fluxes in the constraint-based metabolic framework is usually performed by parsimonious flux balance analysis (pFBA), employing the principle of efficient usage of protein resources. However, we argued that principles related to the coordination of flux values, neglected in previous studies, provide other means to predict intracellular fluxes. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that maximize the number of balanced complexes in a flux distribution, whereby multi-reaction dependencies are maximized. The comparative analysis showed a better agreement of the flux distributions resulting from cbFBA compared to pFBA with experimentally measured fluxes from 17 E. coli strains and 26 S. cerevisiae knock-out mutants. The results also showed that the predictions from cbFBA are more precise than those from pFBA since cbFBA results in a smaller space of alternative solutions than pFBA.}, language = {en} } @phdthesis{Pellegrino2022, author = {Pellegrino, Antonio}, title = {miRNA profiling for diagnosis of chronic pain in polyneuropathy}, doi = {10.25932/publishup-58385}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583858}, school = {Universit{\"a}t Potsdam}, pages = {viii, 97, xi}, year = {2022}, abstract = {This dissertation aimed to determine differential expressed miRNAs in the context of chronic pain in polyneuropathy. For this purpose, patients with chronic painful polyneuropathy were compared with age matched healthy patients. Taken together, all miRNA pre library preparation quality controls were successful and none of the samples was identified as an outlier or excluded for library preparation. Pre sequencing quality control showed that library preparation worked for all samples as well as that all samples were free of adapter dimers after BluePippin size selection and reached the minimum molarity for further processing. Thus, all samples were subjected to sequencing. The sequencing control parameters were in their optimal range and resulted in valid sequencing results with strong sample to sample correlation for all samples. The resulting FASTQ file of each miRNA library was analyzed and used to perform a differential expression analysis. The differentially expressed and filtered miRNAs were subjected to miRDB to perform a target prediction. Three of those four miRNAs were downregulated: hsa-miR-3135b, hsa-miR-584-5p and hsa-miR-12136, while one was upregulated: hsa-miR-550a-3p. miRNA target prediction showed that chronic pain in polyneuropathy might be the result of a combination of miRNA mediated high blood flow/pressure and neural activity dysregulations/disbalances. Thus, leading to the promising conclusion that these four miRNAs could serve as potential biomarkers for the diagnosis of chronic pain in polyneuropathy. Since TRPV1 seems to be one of the major contributors of nociception and is associated with neuropathic pain, the influence of PKA phosphorylated ARMS on the sensitivity of TRPV1 as well as the part of AKAP79 during PKA phosphorylation of ARMS was characterized. Therefore, possible PKA-sites in the sequence of ARMS were identified. This revealed five canonical PKA-sites: S882, T903, S1251/52, S1439/40 and S1526/27. The single PKA-site mutants of ARMS revealed that PKA-mediated ARMS phosphorylation seems not to influence the interaction rate of TRPV1/ARMS. While phosphorylation of ARMST903 does not increase the interaction rate with TRPV1, ARMSS1526/27 is probably not phosphorylated and leads to an increased interaction rate. The calcium flux measurements indicated that the higher the interaction rate of TRPV1/ARMS, the lower the EC50 for capsaicin of TRPV1, independent of the PKA phosphorylation status of ARMS. In addition, the western blot analysis confirmed the previously observed TRPV1/ARMS interaction. More importantly, AKAP79 seems to be involved in the TRPV1/ARMS/PKA signaling complex. To overcome the problem of ARMS-mediated TRPV1 sensitization by interaction, ARMS was silenced by shRNA. ARMS silencing resulted in a restored TRPV1 desensitization without affecting the TRPV1 expression and therefore could be used as new topical therapeutic analgesic alternative to stop ARMS mediated TRPV1 sensitization.}, language = {en} } @phdthesis{Tong2019, author = {Tong, Hao}, title = {Dissection of genetic architecture of intermediate phenotypes and predictions in plants}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {Determining the relationship between genotype and phenotype is the key to understand the plasticity and robustness of phenotypes in nature. While the directly observable plant phenotypes (e.g. agronomic, yield and stress resistance traits) have been well-investigated, there is still a lack in our knowledge about the genetic basis of intermediate phenotypes, such as metabolic phenotypes. Dissecting the links between genotype and phenotype depends on suitable statistical models. The state-of-the-art models are developed for directly observable phenotypes, regardless the characteristics of intermediate phenotypes. This thesis aims to fill the gaps in understanding genetic architecture of intermediate phenotypes, and how they tie to composite traits, namely plant growth. The metabolite levels and reaction fluxes, as two aspects of metabolic phenotypes, are shaped by the interrelated chemical reactions formed in genome-scale metabolic network. Here, I attempt to answer the question: Can the knowledge of underlying genome-scale metabolic network improve the model performance for prediction of metabolic phenotypes and associated plant growth? To this end, two projects are investigated in this thesis. Firstly, we propose an approach that couples genomic selection with genome-scale metabolic network and metabolic profiles in Arabidopsis thaliana to predict growth. This project is the first integration of genomic data with fluxes predicted based on constraint-based modeling framework and data on biomass composition. We demonstrate that our approach leads to a considerable increase of prediction accuracy in comparison to the state-of-the-art methods in both within and across environment predictions. Therefore, our work paves the way for combining knowledge on metabolic mechanisms in the statistical approach underlying genomic selection to increase the efficiency of future plant breeding approaches. Secondly, we investigate how reliable is genomic selection for metabolite levels, and which single nucleotide polymorphisms (SNPs), obtained from different neighborhoods of a given metabolic network, contribute most to the accuracy of prediction. The results show that the local structure of first and second neighborhoods are not sufficient for predicting the genetic basis of metabolite levels in Zea mays. Furthermore, we find that the enzymatic SNPs can capture most the genetic variance and the contribution of non-enzymatic SNPs is in fact small. To comprehensively understand the genetic architecture of metabolic phenotypes, I extend my study to a local Arabidopsis thaliana population and their hybrids. We analyze the genetic architecture in primary and secondary metabolism as well as in growth. In comparison to primary metabolites, compounds from secondary metabolism were more variable and show more non-additive inheritance patterns which could be attributed to epistasis. Therefore, our study demonstrates that heterozygosity in local Arabidopsis thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism. The studies in this thesis improve the knowledge of genetic architecture of metabolic phenotypes in both inbreed and hybrid population. The approaches I proposed to integrate genome-scale metabolic network with genomic data provide the opportunity to obtain mechanistic insights about the determinants of agronomically important polygenic traits.}, language = {en} } @phdthesis{Omranian2022, author = {Omranian, Sara}, title = {Novel algorithms for prediction of protein complexes from protein-protein interacton networks}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2022}, language = {en} } @phdthesis{Aneley2020, author = {Aneley, Gedif Mulugeta}, title = {Drought tolerance prediction of potato by automatic phenotyping of morphological and physiological traits}, doi = {10.25932/publishup-48683}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486836}, school = {Universit{\"a}t Potsdam}, pages = {xi, 176}, year = {2020}, abstract = {Potato is the 4th most important food crop in the world. Especially in tropical and sub-tropical potato production, drought is a yield limiting factor. Potato is sensitive to water stress. Potato yield loss under water stress could be reduced by using tolerant varieties and adjusted agronomic practices. Direct selection for yield under water-stressed conditions requires long selection cycles. Thus, identification of markers for marker-assisted selection may speed up breeding. The objective of this thesis is to identify morphological markers for drought tolerance by continuously monitoring plant growth and canopy temperature with an automatic phenotyping system. The phenotyping was performed in drought-stress experiments that were conducted in population A with 64 genotypes and population B with 21 genotypes in the screenhouse in 2015 and 2016 (population A) and in 2017 and 2018 (population B). Drought tolerance was quantified as deviation of the relative tuber starch yield from the experimental median (DRYM) and parent median (DRYMp). Relative tuber starch yield is starch yield under drought stress relative to the average starch yield of the respective cultivar under control conditions in the same experiment. The specific DRYM value was calculated based on the yield data of the same experiment or the global DRYM that was calculated from yield data derived from data combined over yeas of respective population or across multiple experiments including VALDIS and TROST experiments (2011-2016). Analysis of variance found a significant effect of genotype on DRYM indicating that the tolerance variation required for marker identification was given in both populations. Canopy growth was monitored continuously six times a day over five to ten weeks by a laser scanner system and yielded information on leaf area, plant height and leaf angle for population A and additionally on leaf inclination and light penetration depth for population B. Canopy temperature was measured 48 times a day over six to seven weeks by infrared thermometry in population B. From the continuous IRT surface temperature data set, the canopy temperature for each plant was selected by matching the time stamp of the IRT data with laser scanner data. Mean, maximum, range and growth rate values were calculated from continuous laser scanner measurements of respective canopy parameters. Among the canopy parameters, the maximum and mean values in long-term stress conditions showed better correlation with DRYM values calculated in the same experiment than growth rate and diurnal range values. Therefore, drought tolerance index prediction was done from maximum and mean values of canopy parameters. The tolerance index in specific experiment condition was linearly predicted by simple regression model from different single canopy parameters under long-term stress condition in population A (2016) and population B (2017 and 2018). Among the canopy parameters maximum light penetration depth (2017), mean leaf angle (2017, 2018, and 2016), mean leaf inclination or mean canopy temperature depression (2017 and 2018), maximum plant height (2017) were selected as tolerance predictors. However, no single parameters were sufficient to predict DRYM. Therefore, several independent parameters were integrated in a multiple regression model. In multiple regression model, specific experiment DRYM values in population A was predicted from mean leaf angle (2016). In population B, specific tolerance could be predicted from maximum light penetration depth and mean leaf inclination (2017) and mean leaf inclination (2018) or mean canopy temperature depression and mean leaf angle (2018). In data combined over season of population A, the multiple linear regression model selected maximum plant height and mean leaf angle as tolerance predictor. In Population B, mean leaf inclination was selected as tolerance predictor. However, in population A, the variation explained by the final model was too low. Furthermore, the average tolerances respective to parent median (2011-2018) across FGH plants or all plants (FGH and field) were predicted from maximum plant height (population A) and maximum plant height and mean leaf inclination (population B). Altogether, canopy parameters could be used as markers for drought tolerance. Therefore, water stress breeding in potato could be speed up through using leaf inclination, light penetration depth, plant height and canopy temperature depression as markers for drought tolerance, especially in long-term stress conditions.}, language = {en} } @phdthesis{Schwahn2018, author = {Schwahn, Kevin}, title = {Data driven approaches to infer the regulatory mechanism shaping and constraining levels of metabolites in metabolic networks}, doi = {10.25932/publishup-42324}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423240}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2018}, abstract = {Systems biology aims at investigating biological systems in its entirety by gathering and analyzing large-scale data sets about the underlying components. Computational systems biology approaches use these large-scale data sets to create models at different scales and cellular levels. In addition, it is concerned with generating and testing hypotheses about biological processes. However, such approaches are inevitably leading to computational challenges due to the high dimensionality of the data and the differences in the dimension of data from different cellular layers. This thesis focuses on the investigation and development of computational approaches to analyze metabolite profiles in the context of cellular networks. This leads to determining what aspects of the network functionality are reflected in the metabolite levels. With these methods at hand, this thesis aims to answer three questions: (1) how observability of biological systems is manifested in metabolite profiles and if it can be used for phenotypical comparisons; (2) how to identify couplings of reaction rates from metabolic profiles alone; and (3) which regulatory mechanism that affect metabolite levels can be distinguished by integrating transcriptomics and metabolomics read-outs. I showed that sensor metabolites, identified by an approach from observability theory, are more correlated to each other than non-sensors. The greater correlations between sensor metabolites were detected both with publicly available metabolite profiles and synthetic data simulated from a medium-scale kinetic model. I demonstrated through robustness analysis that correlation was due to the position of the sensor metabolites in the network and persisted irrespectively of the experimental conditions. Sensor metabolites are therefore potential candidates for phenotypical comparisons between conditions through targeted metabolic analysis. Furthermore, I demonstrated that the coupling of metabolic reaction rates can be investigated from a purely data-driven perspective, assuming that metabolic reactions can be described by mass action kinetics. Employing metabolite profiles from domesticated and wild wheat and tomato species, I showed that the process of domestication is associated with a loss of regulatory control on the level of reaction rate coupling. I also found that the same metabolic pathways in Arabidopsis thaliana and Escherichia coli exhibit differences in the number of reaction rate couplings. I designed a novel method for the identification and categorization of transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approach determines the partial correlation of metabolites with control by the principal components of the transcript levels. The principle components contain the majority of the transcriptomic information allowing to partial out the effect of the transcriptional layer from the metabolite profiles. Depending whether the correlation between metabolites persists upon controlling for the effect of the transcriptional layer, the approach allows us to group metabolite pairs into being associated due to post-transcriptional or transcriptional regulation, respectively. I showed that the classification of metabolite pairs into those that are associated due to transcriptional or post-transcriptional regulation are in agreement with existing literature and findings from a Bayesian inference approach. The approaches developed, implemented, and investigated in this thesis open novel ways to jointly study metabolomics and transcriptomics data as well as to place metabolic profiles in the network context. The results from these approaches have the potential to provide further insights into the regulatory machinery in a biological system.}, language = {en} }