@phdthesis{Milles2022, author = {Milles, Alexander}, title = {Sources and consequences of intraspecific trait variation in movement behaviour}, doi = {10.25932/publishup-56501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565011}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 225}, year = {2022}, abstract = {Variation in traits permeates and affects all levels of biological organisation, from within individuals to between species. Yet, intraspecific trait variation (ITV) is not sufficiently represented in many ecological theories. Instead, species averages are often assumed. Especially ITV in behaviour has only recently attracted more attention as its pervasiveness and magnitude became evident. The surge in interest in ITV in behaviour was accompanied by a methodological and technological leap in the field of movement ecology. Many aspects of behaviour become visible via movement, allowing us to observe inter-individual differences in fundamental processes such as foraging, mate searching, predation or migration. ITV in movement behaviour may result from within-individual variability and consistent, repeatable among-individual differences. Yet, questions on why such among-individual differences occur in the first place and how they are integrated with life-history have remained open. Furthermore, consequences of ITV, especially of among-individual differences in movement behaviour, on populations and species communities are not sufficiently understood. In my thesis, I approach timely questions on the sources and consequences of ITV, particularly, in movement behaviour. After outlining fundamental concepts and the current state of knowledge, I approach these questions by using agent-based models to integrate concepts from behavioural and movement ecology and to develop novel perspectives. Modern coexistence theory is a central pillar of community ecology, yet, insufficiently considers ITV in behaviour. In chapter 2, I model a competitive two-species system of ground-dwelling, central-place foragers to investigate the consequences of among-individual differences in movement behaviour on species coexistence. I show that the simulated among-individual differences, which matched with empirical data, reduce fitness differences betweem species, i.e. provide an equalising coexistence mechanism. Furthermore, I explain this result mechanistically and, thus, resolve an apparent ambiguity of the consequences of ITV on species coexistence described in previous studies. In chapter 3, I turn the focus to sources of among-individual differences in movement behaviour and their potential integration with life-history. The pace-of-life syndrome (POLS) theory predicts that the covariation between among-individual differences in behaviour and life-history is mediated by a trade-off between early and late reproduction. This theory has generated attention but is also currently scrutinised. In chapter 3, I present a model which supports a recent conceptual development that suggests fluctuating density-dependent selection as a cause of the POLS. Yet, I also identified processes that may alter the association between movement behaviour and life-history across levels of biological organization. ITV can buffer populations, i.e. reduce their extinction risk. For instance, among-individual differences can mediate portfolio effects or increase evolvability and, thereby, facilitate rapid evolution which can alleviate extinction risk. In chapter 4, I review ITV, environmental heterogeneity, and density-dependent processes which constitute local buffer mechanisms. In the light of habitat isolation, which reduces connectivity between populations, local buffer mechanisms may become more relevant compared to dispersal-related regional buffer mechanisms. In this chapter, I argue that capacities, latencies, and interactions of local buffer mechanisms should motivate more process-based and holistic integration of local buffer mechanisms in theoretical and empirical studies. Recent perspectives propose to apply principles from movement and community ecology to study filamentous fungi. It is an open question whether and how the arrangement and geometry of microstructures select for certain movement traits, and, thus, facilitate coexistence-stabilising niche partitioning. As a coauthor of chapter 5, I developed an agent-based model of hyphal tips navigating in soil-like microstructures along a gradient of soil porosity. By measuring network properties, we identified changes in the optimal movement behaviours along the gradient. Our findings suggest that the soil architecture facilitates niche partitioning. The core chapters are framed by a general introduction and discussion. In the general introduction, I outline fundamental concepts of movement ecology and describe theory and open questions on sources and consequences of ITV in movement behaviour. In the general discussion, I consolidate the findings of the core chapters and critically discuss their respective value and, if applicable, their impact. Furthermore, I emphasise promising avenues for further research.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} } @phdthesis{Kuerschner2022, author = {K{\"u}rschner, Tobias}, title = {Disease transmission and persistence in dynamic landscapes}, doi = {10.25932/publishup-56468}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564689}, school = {Universit{\"a}t Potsdam}, pages = {120, LXXIII}, year = {2022}, abstract = {Infectious diseases are an increasing threat to biodiversity and human health. Therefore, developing a general understanding of the drivers shaping host-pathogen dynamics is of key importance in both ecological and epidemiological research. Disease dynamics are driven by a variety of interacting processes such as individual host behaviour, spatiotemporal resource availability or pathogen traits like virulence and transmission. External drivers such as global change may modify the system conditions and, thus, the disease dynamics. Despite their importance, many of these drivers are often simplified and aggregated in epidemiological models and the interactions among multiple drivers are neglected. In my thesis, I investigate disease dynamics using a mechanistic approach that includes both bottom-up effects - from landscape dynamics to individual movement behaviour - as well as top-down effects - from pathogen virulence on host density and contact rates. To this end, I extended an established spatially explicit individual-based model that simulates epidemiological and ecological processes stochastically, to incorporate a dynamic resource landscape that can be shifted away from the timing of host population-dynamics (chapter 2). I also added the evolution of pathogen virulence along a theoretical virulence-transmission trade-off (chapter 3). In chapter 2, I focus on bottom-up effects, specifically how a temporal shift of resource availability away from the timing of biological events of host-species - as expected under global change - scales up to host-pathogen interactions and disease dynamics. My results show that the formation of temporary disease hotspots in combination with directed individual movement acted as key drivers for pathogen persistence even under highly unfavourable conditions for the host. Even with drivers like global change further increasing the likelihood of unfavourable interactions between host species and their environment, pathogens can continue to persist with heir hosts. In chapter 3, I demonstrate that the top-down effect caused by pathogen-associated mortality on its host population can be mitigated by selection for lower virulent pathogen strains when host densities are reduced through mismatches between seasonal resource availability and host life-history events. I chapter 4, I combined parts of both theoretical models into a new model that includes individual host movement decisions and the evolution of pathogenic virulence to simulate pathogen outbreaks in realistic landscapes. I was able to match simulated patterns of pathogen spread to observed patterns from long-term outbreak data of classical swine fever in wild boar in Northern Germany. The observed disease course was best explained by a simulated high virulent strain, whereas sampling schemes and vaccination campaigns could explain differences in the age-distribution of infected hosts. My model helps to understand and disentangle how the combination of individual decision making and evolution of virulence can act as important drivers of pathogen spread and persistence. As I show across the chapters of this thesis, the interplay of both bottom-up and top-down processes is a key driver of disease dynamics in spatially structured host populations, as they ultimately shape host densities and contact rates among moving individuals. My findings are an important step towards a paradigm shift in disease ecology away from simplified assumptions towards the inclusion of mechanisms, such as complex multi-trophic interactions, and their feedbacks on pathogen spread and disease persistence. The mechanisms presented here should be at the core of realistic predictive and preventive epidemiological models.}, language = {en} }