@phdthesis{Kwarikunda2023, author = {Kwarikunda, Diana}, title = {Interest, motivation, and learning strategies use during physics learning}, doi = {10.25932/publishup-60931}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609311}, school = {Universit{\"a}t Potsdam}, pages = {viii, 221}, year = {2023}, abstract = {The purpose of this thesis was to investigate the developmental dynamics between interest, motivation, and learning strategy use during physics learning. The target population was lower secondary school students from a developing country, given that there is hardly in research that studies the above domain-specific concepts in the context of developing countries. The aim was addressed in four parts. The first part of the study was guided by three objectives: (a) to adapt and validate the Science Motivation Questionnaire (SMQ-II) for the Ugandan context; (b) to examine whether there are significant differences in motivation for learning Physics with respect to students' gender; and (c) to establish the extent to which students' interest predicts their motivation to learn Physics. Being a pilot study, the sample comprised 374 randomly selected students from five schools in central Uganda who responded to anonymous questionnaires that included scales from the SMQ-II and the Individual Interest Questionnaire. Data were analysed using confirmatory factor analyses, t-tests and structural equation modelling in SPSS-25 and Mplus-8. The five-factor model solution of the SMQ-II fitted adequately with the study data, with deletion of one item. The modified SMQ-II exhibited invariant factor loadings and intercepts (i.e., strong measurement invariance) when administered to boys and girls. Furthermore, on assessing whether motivation for learning Physics varied with gender, no significant differences were noted. On assessing the predictive effects of individual interest on students' motivation, individual interest significantly predicted all motivational constructs, with stronger predictive strength on students' self-efficacy and self-determination in learning Physics. In the second part whilst using comprised 934 Grade 9 students from eight secondary schools in Uganda, Latent profile analysis (LPA) - a person-centred approach was used to investigate motivation patterns that exist in lower secondary school students during physics learning. A three-step approach to LPA was used to answer three research questions: RQ1, which profiles of secondary school students exist with regards to their motivation for Physics learning; RQ2, are there differences in students' cognitive learning strategies in the identified profiles; and RQ3, does students' gender, attitudes, and individual interest predict membership in these profiles? Six motivational profiles were identified: (i) low-quantity motivation profile (101 students; 10.8\%); (ii) moderate-quantity motivation profile (246 students; 26.3\%); (iii) high-quantity motivation profile (365 students; 39.1\%); (iv) primarily intrinsically motivated profile (60 students,6.4\%); (v) mostly extrinsically motivated profile (88 students, 9.4\%); and (vi) grade-introjected profile (74 students, 7.9\%). Low-quantity and grade introjected motivated students mostly used surface learning strategies whilst the high-quantity and primarily intrinsically motivated students used deep learning strategies. On examining the predictive effect of gender, individual interest, and students' attitudes on the profile membership, unlike gender, individual interest and students' attitudes towards Physics learning strongly predicted profile membership. In the third part of the study, the occurrence of different secondary school learner profiles depending on their various combinations of cognitive and metacognitive learning strategy use, as well as their differences in perceived autonomy support, intrinsic motivation, and gender was examined. Data were collected from 576 9th grade student. Four learner profiles were identified: competent strategy user, struggling user, surface-level learner, and deep-level learner profiles. Gender differences were noted in students' use of elaboration and organization strategies to learn Physics, in favour of girls. In terms of profile memberships, significant differences in gender, intrinsic motivation and perceived autonomy support were also noted. Girls were 2.4 - 2.7 times more likely than boys to be members of the competent strategy user and surface-level learner profiles. Additionally, higher levels of intrinsic motivation predicted an increased likelihood membership into the deep-level learner profile, whilst higher levels of perceived teacher autonomy predicted an increased likelihood membership into the competent strategy user profile as compared to other profiles. Lastly, in the fourth part, changes in secondary school students' physics motivation and cognitive learning strategies use during physics learning across time were examined. Two waves of data were collected from initially 954 9th students through to their 10th grade. A three-step approach to Latent transition analysis was used. Generally, students' motivation decreased from 9th to 10th grade. Qualitative students' motivation profiles indicated strong with-in person stability whilst the quantitative profiles were relatively less stable. Mostly, students moved from the high quantity motivation profile to the extrinsically motivated profiles. On the other hand, the cognitive learning strategies use profiles were moderately stable; with higher with-in person stability in the deep-level learner profile. None of the struggling users and surface-level learners transitioned into the deep-level learners' profile. Additionally, students who perceived increased support for autonomy from their teachers had higher membership likelihood into the competent users' profiles whilst those with an increase in individual interest score had higher membership likelihood into the deep-level learner profile.}, language = {en} } @phdthesis{Rettig2021, author = {Rettig, Anja}, title = {Learning to read in German}, school = {Universit{\"a}t Potsdam}, pages = {XXIII, 231, LXXX}, year = {2021}, abstract = {In the present dissertation, the development of eye movement behavior and the perceptual span of German beginning readers was investigated in Grades 1 to 3 (Study 1) and longitudinally within a one-year time interval (Study 2), as well as in relation to intrinsic and extrinsic reading motivation (Study 3). The presented results are intended to fill the gap of only sparse information on young readers' eye movements and completely missing information on German young readers' perceptual span and its development. On the other hand, reading motivation data have been scrutinized with respect to reciprocal effects on reading comprehension but not with respect to more immediate, basic cognitive processing (e.g., word decoding) that is indicated by different eye movement measures. Based on a longitudinal study design, children in Grades 1-3 participated in a moving window reading experiment with eye movement recordings in two successive years. All children were participants of a larger longitudinal study on intrapersonal developmental risk factors in childhood and adolescence (PIER study). Motivation data and other psychometric reading data were collected during individual inquiries and tests at school. Data analyses were realized in three separate studies that focused on different but related aspects of reading and perceptual span development. Study 1 presents the first cross-sectional report on the perceptual span of beginning German readers. The focus was on reading rate changes in Grades 1 to 3 and on the issue of the onset of the perceptual span development and its dependence on basic foveal reading processes. Study 2 presents a successor of Study 1 providing first longitudinal data of the perceptual span in elementary school children. It also includes information on the stability of observed and predicted reading rates and perceptual span sizes and introduces a new measure of the perceptual span based on nonlinear mixed-effects models. Another issue addressed in this study is the longitudinal between-group comparison of slower and faster readers which refers to the detection of developmental patterns. Study 3 includes longitudinal reading motivation data and investigates the relation between different eye movement measures including perceptual span and intrinsic as well as extrinsic reading motivation. In Study 1, a decelerated increase in reading rate was observed between Grades 1 to 3. Grade effects were also reported for saccade length, refixation probability, and different fixation duration measures. With higher grade, mean saccade length increased, whereas refixation probability, first-fixation duration, gaze duration, and total reading time decreased. Perceptual span development was indicated by an increase in window size effects with grade level. Grade level differences with respect to window size effects were stronger between Grades 2 and 3 than between Grades 1 and 2. These results were replicated longitudinally in Study 2. Again, perceptual span size significantly changed between Grades 2 and 3, but not between Grades 1 and 2 or Grades 3 and 4. Observed and predicted reading rates were found to be highly stable after first grade, whereas stability of perceptual span was only moderate for all grade levels. Group differences between slower and faster readers in Year 1 remained observable in Year 2 showing a pattern of stable achievement differences rather than a compensatory pattern. Between Grades 2 and 3, between-group differences in reading rate even increased resulting in a Matthew effect. A similar effect was observed for perceptual span development between Grades 3 and 4. Finally, in Study 3, significant relations between beginning readers' eye movements and their reading motivation were observed. In both years of measurement, higher intrinsic reading motivation was related to more skilled eye movement patterns as indicated by short fixations, longer saccades, and higher reading rates. In Year 2, intrinsic reading motivation was also significantly and negatively correlated with refixation probability. These correlational patterns were confirmed in cross-sectional linear models controlling for grade level and reading amount and including both reading motivation measures, extrinsic and intrinsic motivation. While there were significant positive relations between intrinsic reading motivation and word decoding as indicated by the above stated eye movement measures, extrinsic reading motivation only predicted variance in eye movements in Year 2 (significant for fixation durations and reading rate), with a consistently opposite pattern of effects as compared to intrinsic reading motivation. Finally, longitudinal effects of Year 1 intrinsic reading motivation on Year 2 word decoding were observed for gaze duration, total reading time, refixation probability, and perceptual span within cross-lagged panel models. These effects were reciprocal because all eye movement measures significantly predicted variance in intrinsic reading motivation. Extrinsic reading motivation in Year 1 did not affect any eye movement measure in Year 2, and vice versa, except for a significant, negative relation with perceptual span. Concluding, the present dissertation demonstrates that largest gains in reading development in terms of eye movement changes are observable between Grades 1 and 2. Together with the observed pattern of stable differences between slower and faster readers and a widening achievement gap between Grades 2 and 3 for reading rate, these results underline the importance of the first year(s) of formal reading instruction. The development of the perceptual span lags behind as it is most apparent between Grades 2 and 3. This suggests that efficient parafoveal processing presupposes a certain degree of foveal reading proficiency (e.g., word decoding). Finally, this dissertation demonstrates that intrinsic reading motivation—but not extrinsic motivation—effectively supports the development of skilled reading.}, language = {en} }