@phdthesis{Christ2020, author = {Christ, Simon}, title = {Morphological transitions of vesicles exposed to nonuniform spatio-temporal conditions}, doi = {10.25932/publishup-48078}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480788}, school = {Universit{\"a}t Potsdam}, pages = {viii, 105}, year = {2020}, abstract = {Giant unilamellar vesicles are an important tool in todays experimental efforts to understand the structure and behaviour of biological cells. Their simple structure allows the isolation of the physical elastic properties of the lipid membrane. A central physical property is the bending energy of the membrane, since the many different shapes of giant vesicles can be obtained by finding the minimum of the bending energy. In the spontaneous curvature model the bending energy is a function of the bending rigidity as well as the mean curvature and an additional parameter called the spontaneous curvature, which describes an internal preference of the lipid-bilayer to bend towards one side or the other. The spontaneous and mean curvature are local properties of the membrane. Additional constraints arise from the conservation of the membrane surface area and the enclosed volume, which are global properties. In this thesis the spontaneous curvature model is used to explain the experimental observation of a periodic shape oscillation of a giant unilamellar vesicle that was filled with a protein complex that periodically binds to and unbinds from the membrane. By assuming that the binding of the proteins to the membrane induces a change in the spontaneous curvature the experimentally observed shapes could successfully be explained. This involves the numerical solution of the differential equations as obtained from the minimization of the bending energy respecting the area and volume constraints, the so called shape equations. Vice versa this approach can be used to estimate the spontaneous curvature from experimentally measurable quantities. The second topic of this thesis is the analysis of concentration gradients in rigid conic membrane compartments. Gradients of an ideal gas due to gravity and gradients generated by the directed stochastic movement of molecular motors along a microtubulus were considered. It was possible to calculate the free energy and the bending energy analytically for the ideal gas. In the case of the non-equilibrium system with molecular motors, the characteristic length of the density profile, the jam-length, and its dependency on the opening angle of the conic compartment have been calculated in the mean-field limit. The mean field results agree qualitatively with stochastic particle simulations.}, language = {en} } @phdthesis{Pramanik2023, author = {Pramanik, Shreya}, title = {Protein reconstitution in giant vesicles}, doi = {10.25932/publishup-61278}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612781}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 132}, year = {2023}, abstract = {Das Leben auf der Erde ist vielf{\"a}ltig und reicht von einzelligen Organismen bis hin zu mehrzelligen Lebewesen wie dem Menschen. Obwohl es Theorien dar{\"u}ber gibt, wie sich diese Organismen entwickelt haben k{\"o}nnten, verstehen wir nur wenig dar{\"u}ber, wie "Leben" aus Molek{\"u}len entstanden ist. Die synthetische Bottom-up-Biologie zielt darauf ab, minimale Zellen zu schaffen, indem sie verschiedene Module wie Kompartimentierung, Wachstum, Teilung und zellul{\"a}re Kommunikation kombiniert. Alle lebenden Zellen haben eine Membran, die sie von dem sie umgebenden w{\"a}ssrigen Medium trennt und sie sch{\"u}tzt. Dar{\"u}ber hinaus haben alle eukaryotischen Zellen Organellen, die von intrazellul{\"a}ren Membranen umschlossen sind. Jede Zellmembran besteht haupts{\"a}chlich aus einer Lipiddoppelschicht mit Membranproteinen. Lipide sind amphiphile Molek{\"u}le, die molekulare Doppelschichten aus zwei Lipid-Monoschichten oder Bl{\"a}ttchen bilden. Die hydrophoben Ketten der Lipide sind einander zugewandt, w{\"a}hrend ihre hydrophilen Kopfgruppen die Grenzfl{\"a}chen zur w{\"a}ssrigen Umgebung bilden. Riesenvesikel sind Modellmembransysteme, die Kompartimente mit einer Gr{\"o}ße von mehreren Mikrometern bilden und von einer einzigen Lipiddoppelschicht umgeben sind. Die Gr{\"o}ße der Riesenvesikel ist mit der Gr{\"o}ße von Zellen vergleichbar und macht sie zu guten Membranmodellen, die mit einem Lichtmikroskop untersucht werden k{\"o}nnen. Allerdings fehlen den Riesenvesikelmembranen nach der ersten Pr{\"a}paration Membranproteine, die in weiteren Pr{\"a}parationsschritten in diese Membranen eingebaut werden m{\"u}ssen. Je nach Protein kann es entweder {\"u}ber Ankerlipide an eines der Membranbl{\"a}ttchen gebunden oder {\"u}ber seine Transmembrandom{\"a}nen in die Lipiddoppelschicht eingebaut werden. Diese Arbeit befasst sich mit der Herstellung von Riesenvesikeln und der Rekonstitution von Proteinen in diesen Vesikeln. Außerdem wird ein mikrofluidischer Chip entworfen, der in verschiedenen Experimenten verwendet werden kann. Die Ergebnisse dieser Arbeit werden anderen Forschern helfen, die Protokolle f{\"u}r die Herstellung von GUVs zu verstehen, Proteine in GUVs zu rekonstituieren und Experimente mit dem mikrofluidischen Chip durchzuf{\"u}hren. Auf diese Weise wird die vorliegende Arbeit f{\"u}r das langfristige Ziel von Nutzen sein, die verschiedenen Module der synthetischen Biologie zu kombinieren, um eine Minimalzelle zu schaffen.}, language = {en} } @phdthesis{Foerste2022, author = {F{\"o}rste, Stefanie}, title = {Assemblierung von Proteinkomplexen in vitro und in vivo}, doi = {10.25932/publishup-55074}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550742}, school = {Universit{\"a}t Potsdam}, pages = {x, 143, xxxviii}, year = {2022}, abstract = {Proteine sind an praktisch allen Prozessen in lebenden Zellen maßgeblich beteiligt. Auch in der Biotechnologie werden Proteine in vielf{\"a}ltiger Weise eingesetzt. Ein Protein besteht aus einer Kette von Aminos{\"a}uren. H{\"a}ufig lagern sich mehrere dieser Ketten zu gr{\"o}ßeren Strukturen und Funktionseinheiten, sogenannten Proteinkomplexen, zusammen. K{\"u}rzlich wurde gezeigt, dass eine Proteinkomplexbildung bereits w{\"a}hrend der Biosynthese der Proteine (co-translational) stattfinden kann und nicht stets erst danach (post-translational) erfolgt. Da Fehlassemblierungen von Proteinen zu Funktionsverlusten und adversen Effekten f{\"u}hren, ist eine pr{\"a}zise und verl{\"a}ssliche Proteinkomplexbildung sowohl f{\"u}r zellul{\"a}re Prozesse als auch f{\"u}r biotechnologische Anwendungen essenziell. Mit experimentellen Methoden lassen sich zwar u.a. die St{\"o}chiometrie und die Struktur von Proteinkomplexen bestimmen, jedoch bisher nicht die Dynamik der Komplexbildung auf unterschiedlichen Zeitskalen. Daher sind grundlegende Mechanismen der Proteinkomplexbildung noch nicht vollst{\"a}ndig verstanden. Die hier vorgestellte, auf experimentellen Erkenntnissen aufbauende, computergest{\"u}tzte Modellierung der Proteinkomplexbildung erlaubt eine umfassende Analyse des Einflusses physikalisch-chemischer Parameter auf den Assemblierungsprozess. Die Modelle bilden m{\"o}glichst realistisch die experimentellen Systeme der Kooperationspartner (Bar-Ziv, Weizmann-Institut, Israel; Bukau und Kramer, Universit{\"a}t Heidelberg) ab, um damit die Assemblierung von Proteinkomplexen einerseits in einem quasi-zweidimensionalen synthetischen Expressionssystem (in vitro) und andererseits im Bakterium Escherichia coli (in vivo) untersuchen zu k{\"o}nnen. Mit Hilfe eines vereinfachten Expressionssystems, in dem die Proteine nur an die Chip-Oberfl{\"a}che, aber nicht aneinander binden k{\"o}nnen, wird das theoretische Modell parametrisiert. In diesem vereinfachten in-vitro-System durchl{\"a}uft die Effizienz der Komplexbildung drei Regime - ein bindedominiertes Regime, ein Mischregime und ein produktionsdominiertes Regime. Ihr Maximum erreicht die Effizienz dabei kurz nach dem {\"U}bergang vom bindedominierten ins Mischregime und f{\"a}llt anschließend monoton ab. Sowohl im nicht-vereinfachten in-vitro- als auch im in-vivo-System koexistieren je zwei konkurrierende Assemblierungspfade: Im in-vitro-System erfolgt die Komplexbildung entweder spontan in w{\"a}ssriger L{\"o}sung (L{\"o}sungsassemblierung) oder aber in einer definierten Schrittfolge an der Chip-Oberfl{\"a}che (Oberfl{\"a}chenassemblierung); Im in-vivo-System konkurrieren hingegen die co- und die post-translationale Komplexbildung. Es zeigt sich, dass die Dominanz der Assemblierungspfade im in-vitro-System zeitabh{\"a}ngig ist und u.a. durch die Limitierung und St{\"a}rke der Bindestellen auf der Chip-Oberfl{\"a}che beeinflusst werden kann. Im in-vivo-System hat der r{\"a}umliche Abstand zwischen den Syntheseorten der beiden Proteinkomponenten nur dann einen Einfluss auf die Komplexbildung, wenn die Untereinheiten schnell degradieren. In diesem Fall dominiert die co-translationale Assemblierung auch auf kurzen Zeitskalen deutlich, wohingegen es bei stabilen Untereinheiten zu einem Wechsel von der Dominanz der post- hin zu einer geringen Dominanz der co-translationalen Assemblierung kommt. Mit den in-silico-Modellen l{\"a}sst sich neben der Dynamik u.a. auch die Lokalisierung der Komplexbildung und -bindung darstellen, was einen Vergleich der theoretischen Vorhersagen mit experimentellen Daten und somit eine Validierung der Modelle erm{\"o}glicht. Der hier pr{\"a}sentierte in-silico Ansatz erg{\"a}nzt die experimentellen Methoden, und erlaubt so, deren Ergebnisse zu interpretieren und neue Erkenntnisse davon abzuleiten.}, language = {de} } @phdthesis{Banerjee2020, author = {Banerjee, Pallavi}, title = {Glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins tethered to lipid bilayers}, doi = {10.25932/publishup-48956}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489561}, school = {Universit{\"a}t Potsdam}, pages = {xv, 141}, year = {2020}, abstract = {Glycosylphosphatidylinositols (GPIs) are highly complex glycolipids that serve as membrane anchors to a large variety of eukaryotic proteins. These are covalently attached to a group of peripheral proteins called GPI-anchored proteins (GPI-APs) through a post-translational modification in the endoplasmic reticulum. The GPI anchor is a unique structure composed of a glycan, with phospholipid tail at one end and a phosphoethanolamine linker at the other where the protein attaches. The glycan part of the GPI comprises a conserved pseudopentasaccharide core that could branch out to carry additional glycosyl or phosphoethanolamine units. GPI-APs are involved in a diverse range of cellular processes, few of which are signal transduction, protein trafficking, pathogenesis by protozoan parasites like the malaria- causing parasite Plasmodium falciparum. GPIs can also exist freely on the membrane surface without an attached protein such as those found in parasites like Toxoplasma gondii, the causative agent of Toxoplasmosis. These molecules are both structurally and functionally diverse, however, their structure-function relationship is still poorly understood. This is mainly because no clear picture exists regarding how the protein and the glycan arrange with respect to the lipid layer. Direct experimental evidence is rather scarce, due to which inconclusive pictures have emerged, especially regarding the orientation of GPIs and GPI-APs on membrane surfaces and the role of GPIs in membrane organization. It appears that computational modelling through molecular dynamics simulations would be a useful method to make progress. In this thesis, we attempt to explore characteristics of GPI anchors and GPI-APs embedded in lipid bilayers by constructing molecular models at two different resolutions - all-atom and coarse-grained. First, we show how to construct a modular molecular model of GPIs and GPI-anchored proteins that can be readily extended to a broad variety of systems, addressing the micro-heterogeneity of GPIs. We do so by creating a hybrid link to which GPIs of diverse branching and lipid tails of varying saturation with their optimized force fields, GLYCAM06 and Lipid14 respectively, can be attached. Using microsecond simulations, we demonstrate that GPI prefers to "flop-down" on the membrane, thereby, strongly interacting with the lipid heads, over standing upright like a "lollipop". Secondly, we extend the model of the GPI core to carry out a systematic study of the structural aspects of GPIs carrying different side chains (parasitic and human GPI variants) inserted in lipid bilayers. Our results demonstrate the importance of the side branch residues as these are the most accessible, and thereby, recognizable epitopes. This finding qualitatively agrees with experimental observations that highlight the role of the side branches in immunogenicity of GPIs and the specificity thereof. The overall flop-down orientation of the GPIs with respect to the bilayer surface presents the side chain residues to face the solvent. Upon attaching the green fluorescent protein (GFP) to the GPI, it is seen to lie in close proximity to the bilayer, interacting both with the lipid heads and glycan part of the GPI. However the orientation of GFP is sensitive to the type of GPI it is attached to. Finally, we construct a coarse-grained model of the GPI and GPI-anchored GFP using a modified version of the MARTINI force-field, using which the timescale is enhanced by at least an order of magnitude compared to the atomistic system. This study provides a theoretical perspective on the conformational behavior of the GPI core and some of its branched variations in presence of lipid bilayers, as well as draws comparisons with experimental observations. Our modular atomistic model of GPI can be further employed to study GPIs of variable branching, and thereby, aid in designing future experiments especially in the area of vaccines and drug therapies. Our coarse-grained model can be used to study dynamic aspects of GPIs and GPI-APs w.r.t plasma membrane organization. Furthermore, the backmapping technique of converting coarse-grained trajectory back to the atomistic model would enable in-depth structural analysis with ample conformational sampling.}, language = {en} }