@phdthesis{Senftleben2020, author = {Senftleben, Robin}, title = {Earth's magnetic field over the last 1000 years}, doi = {10.25932/publishup-47315}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473150}, school = {Universit{\"a}t Potsdam}, pages = {xii, 104}, year = {2020}, abstract = {To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest.}, language = {en} } @phdthesis{Schanner2022, author = {Schanner, Maximilian Arthus}, title = {Correlation based modeling of the archeomagnetic field}, doi = {10.25932/publishup-55587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555875}, school = {Universit{\"a}t Potsdam}, pages = {vii, 146}, year = {2022}, abstract = {The geomagnetic main field is vital for live on Earth, as it shields our habitat against the solar wind and cosmic rays. It is generated by the geodynamo in the Earth's outer core and has a rich dynamic on various timescales. Global models of the field are used to study the interaction of the field and incoming charged particles, but also to infer core dynamics and to feed numerical simulations of the geodynamo. Modern satellite missions, such as the SWARM or the CHAMP mission, support high resolution reconstructions of the global field. From the 19 th century on, a global network of magnetic observatories has been established. It is growing ever since and global models can be constructed from the data it provides. Geomagnetic field models that extend further back in time rely on indirect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic rocks and sediment records from lakes and seas. These indirect records come with (partially very large) uncertainties, introduced by the complex measurement methods and the dating procedure. Focusing on thermoremanent records only, the aim of this thesis is the development of a new modeling strategy for the global geomagnetic field during the Holocene, which takes the uncertainties into account and produces realistic estimates of the reliability of the model. This aim is approached by first considering snapshot models, in order to address the irregular spatial distribution of the records and the non-linear relation of the indirect observations to the field itself. In a Bayesian setting, a modeling algorithm based on Gaussian process regression is developed and applied to binned data. The modeling algorithm is then extended to the temporal domain and expanded to incorporate dating uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges arising from the size of the Holocene dataset. The central result of this thesis, including all of the aspects mentioned, is a new global geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we call it ArchKalmag14k. When considering the uncertainties that are produced together with the model, it is evident that before 6000 BCE the thermoremanent database is not sufficient to support global models. For times more recent, ArchKalmag14k can be used to analyze features of the field under consideration of posterior uncertainties. The algorithm for generating ArchKalmag14k can be applied to different datasets and is provided to the community as an open source python package.}, language = {en} } @phdthesis{Pick2020, author = {Pick, Leonie Johanna Lisa}, title = {The centennial evolution of geomagnetic activity and its driving mechanisms}, doi = {10.25932/publishup-47275}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472754}, school = {Universit{\"a}t Potsdam}, pages = {ix, 135}, year = {2020}, abstract = {This cumulative thesis is concerned with the evolution of geomagnetic activity since the beginning of the 20th century, that is, the time-dependent response of the geomagnetic field to solar forcing. The focus lies on the description of the magnetospheric response field at ground level, which is particularly sensitive to the ring current system, and an interpretation of its variability in terms of the solar wind driving. Thereby, this work contributes to a comprehensive understanding of long-term solar-terrestrial interactions. The common basis of the presented publications is formed by a reanalysis of vector magnetic field measurements from geomagnetic observatories located at low and middle geomagnetic latitudes. In the first two studies, new ring current targeting geomagnetic activity indices are derived, the Annual and Hourly Magnetospheric Currents indices (A/HMC). Compared to existing indices (e.g., the Dst index), they do not only extend the covered period by at least three solar cycles but also constitute a qualitative improvement concerning the absolute index level and the ~11-year solar cycle variability. The analysis of A/HMC shows that (a) the annual geomagnetic activity experiences an interval-dependent trend with an overall linear decline during 1900-2010 of ~5 \% (b) the average trend-free activity level amounts to ~28 nT (c) the solar cycle related variability shows amplitudes of ~15-45 nT (d) the activity level for geomagnetically quiet conditions (Kp<2) lies slightly below 20 nT. The plausibility of the last three points is ensured by comparison to independent estimations either based on magnetic field measurements from LEO satellite missions (since the 1990s) or the modeling of geomagnetic activity from solar wind input (since the 1960s). An independent validation of the longterm trend is problematic mainly because the sensitivity of the locally measured geomagnetic activity depends on geomagnetic latitude. Consequently, A/HMC is neither directly comparable to global geomagnetic activity indices (e.g., the aa index) nor to the partly reconstructed open solar magnetic flux, which requires a homogeneous response of the ground-based measurements to the interplanetary magnetic field and the solar wind speed. The last study combines a consistent, HMC-based identification of geomagnetic storms from 1930-2015 with an analysis of the corresponding spatial (magnetic local time-dependent) disturbance patterns. Amongst others, the disturbances at dawn and dusk, particularly their evolution during the storm recovery phases, are shown to be indicative of the solar wind driving structure (Interplanetary Coronal Mass Ejections vs. Stream or Co-rotating Interaction Regions), which enables a backward-prediction of the storm driver classes. The results indicate that ICME-driven geomagnetic storms have decreased since 1930 which is consistent with the concurrent decrease of HMC. Out of the collection of compiled follow-up studies the inclusion of measurements from high-latitude geomagnetic observatories into the third study's framework seems most promising at this point.}, language = {en} }