@phdthesis{Ilin2022, author = {Ilin, Ekaterina}, title = {High lights: stellar flares as probes of magnetism in stars and star-planet systems}, doi = {10.25932/publishup-56356}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563565}, school = {Universit{\"a}t Potsdam}, pages = {x, 168}, year = {2022}, abstract = {Flares are magnetically driven explosions that occur in the atmospheres of all main sequence stars that possess an outer convection zone. Flaring activity is rooted in the magnetic dynamo that operates deep in the stellar interior, propagates through all layers of the atmosphere from the corona to the photosphere, and emits electromagnetic radiation from radio bands to X-ray. Eventually, this radiation, and associated eruptions of energetic particles, are ejected out into interplanetary space, where they impact planetary atmospheres, and dominate the space weather environments of young star-planet systems. Thanks to the Kepler and the Transit Exoplanet Survey Satellite (TESS) missions, flare observations have become accessible for millions of stars and star-planet systems. The goal of this thesis is to use these flares as multifaceted messengers to understand stellar magnetism across the main sequence, investigate planetary habitability, and explore how close-in planets can affect the host star. Using space based observations obtained by the Kepler/K2 mission, I found that flaring activity declines with stellar age, but this decline crucially depends on stellar mass and rotation. I calibrated the age of the stars in my sample using their membership in open clusters from zero age main sequence to solar age. This allowed me to reveal the rapid transition from an active, saturated flaring state to a more quiescent, inactive flaring behavior in early M dwarfs at about 600-800 Myr. This result is an important observational constraint on stellar activity evolution that I was able to de-bias using open clusters as an activity-independent age indicator. The TESS mission quickly superseded Kepler and K2 as the main source of flares in low mass M dwarfs. Using TESS 2-minute cadence light curves, I developed a new technique for flare localization and discovered, against the commonly held belief, that flares do not occur uniformly across their stellar surface: In fast rotating fully convective stars, giant flares are preferably located at high latitudes. This bears implications for both our understanding of magnetic field emergence in these stars, and the impact on the exoplanet atmospheres: A planet that orbits in the equatorial plane of its host may be spared from the destructive effects of these poleward emitting flares. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b is one of the most promising targets for a first observation of flaring star-planet interactions. In these interactions, the planet influences the star, as opposed to space weather, where the planet is always on the receiving side. The effect reflects the properties of the magnetosphere shared by planet and star, as well as the so far inaccessible magnetic properties of planets. In the about 50 days of TESS monitoring data of AU Mic, I searched for statistically robust signs of flaring interactions with AU Mic b as flares that occur in surplus of the star's intrinsic activity. I found the strongest yet still marginal signal in recurring excess flaring in phase with the orbital period of AU Mic b. If it reflects true signal, I estimate that extending the observing time by a factor of 2-3 will yield a statistically significant detection. Well within the reach of future TESS observations, this additional data may bring us closer to robustly detecting this effect than we have ever been. This thesis demonstrates the immense scientific value of space based, long baseline flare monitoring, and the versatility of flares as a carrier of information about the magnetism of star-planet systems. Many discoveries still lay in wait in the vast archives that Kepler and TESS have produced over the years. Flares are intense spotlights into the magnetic structures in star-planet systems that are otherwise far below our resolution limits. The ongoing TESS mission, and soon PLATO, will further open the door to in-depth understanding of small and dynamic scale magnetic fields on low mass stars, and the space weather environment they effect.}, language = {en} } @phdthesis{IlićPetković2023, author = {Ilić Petković, Nikoleta}, title = {Stars under influence: evidence of tidal interactions between stars and substellar companions}, doi = {10.25932/publishup-61597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615972}, school = {Universit{\"a}t Potsdam}, pages = {xi, 137}, year = {2023}, abstract = {Tidal interactions occur between gravitationally bound astrophysical bodies. If their spatial separation is sufficiently small, the bodies can induce tides on each other, leading to angular momentum transfer and altering of evolutionary path the bodies would have followed if they were single objects. The tidal processes are well established in the Solar planet-moon systems and close stellar binary systems. However, how do stars behave if they are orbited by a substellar companion (e.g. a planet or a brown dwarf) on a tight orbit? Typically, a substellar companion inside the corotation radius of a star will migrate toward the star as it loses orbital angular momentum. On the other hand, the star will gain angular momentum which has the potential to increase its rotation rate. The effect should be more pronounced if the substellar companion is more massive. As the stellar rotation rate and the magnetic activity level are coupled, the star should appear more magnetically active under the tidal influence of the orbiting substellar companion. However, the difficulty in proving that a star has a higher magnetic activity level due to tidal interactions lies in the fact that (I) substellar companions around active stars are easier to detect if they are more massive, leading to a bias toward massive companions around active stars and mimicking the tidal interaction effect, and that (II) the age of a main-sequence star cannot be easily determined, leaving the possibility that a star is more active due to its young age. In our work, we overcome these issues by employing wide stellar binary systems where one star hosts a substellar companion, and where the other star provides the magnetic activity baseline for the host star, assuming they have coevolved, and thereby provides the host's activity level if tidal interactions have no effect on it. Firstly, we find that extrasolar planets can noticeably increase the host star's X-ray luminosity and that the effect is more pronounced if the exoplanet is at least Jupiter-like in mass and close to the star. Further, we find that a brown dwarf will have an even stronger effect, as expected, and that the X-ray surface flux difference between the host star and the wide stellar companion is a significant outlier when compared to a large sample of similar wide binary systems without any known substellar companions. This result proves that substellar hosting wide binary systems can be good tools to reveal the tidal effect on host stars, and also show that the typical stellar age indicators as activity or rotation cannot be used for these stars. Finally, knowing that the activity difference is a good tracer of the substellar companion's tidal impact, we develop an analytical method to calculate the modified tidal quality factor Q' of individual host stars, which defines the tidal dissipation efficiency in the convective envelope of a given main-sequence star.}, language = {en} }