@phdthesis{Mostafa2024, author = {Mostafa, Amr}, title = {DNA origami nanoforks: A platform for cytochrome c single molecule surface enhanced Raman spectroscopy}, doi = {10.25932/publishup-63548}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-635482}, school = {Universit{\"a}t Potsdam}, pages = {xi, 90, x}, year = {2024}, abstract = {This thesis presents a comprehensive exploration of the application of DNA origami nanofork antennas (DONAs) in the field of spectroscopy, with a particular focus on the structural analysis of Cytochrome C (CytC) at the single-molecule level. The research encapsulates the design, optimization, and application of DONAs in enhancing the sensitivity and specificity of Raman spectroscopy, thereby offering new insights into protein structures and interactions. The initial phase of the study involved the meticulous optimization of DNA origami structures. This process was pivotal in developing nanoscale tools that could significantly enhance the capabilities of Raman spectroscopy. The optimized DNA origami nanoforks, in both dimer and aggregate forms, demonstrated an enhanced ability to detect and analyze molecular vibrations, contributing to a more nuanced understanding of protein dynamics. A key aspect of this research was the comparative analysis between the dimer and aggregate forms of DONAs. This comparison revealed that while both configurations effectively identified oxidation and spin states of CytC, the aggregate form offered a broader range of detectable molecular states due to its prolonged signal emission and increased number of molecules. This extended duration of signal emission in the aggregates was attributed to the collective hotspot area, enhancing overall signal stability and sensitivity. Furthermore, the study delved into the analysis of the Amide III band using the DONA system. Observations included a transient shift in the Amide III band's frequency, suggesting dynamic alterations in the secondary structure of CytC. These shifts, indicative of transitions between different protein structures, were crucial in understanding the protein's functional mechanisms and interactions. The research presented in this thesis not only contributes significantly to the field of spectroscopy but also illustrates the potential of interdisciplinary approaches in biosensing. The use of DNA origami-based systems in spectroscopy has opened new avenues for research, offering a detailed and comprehensive understanding of protein structures and interactions. The insights gained from this research are expected to have lasting implications in scientific fields ranging from drug development to the study of complex biochemical pathways. This thesis thus stands as a testament to the power of integrating nanotechnology, biochemistry, and spectroscopic techniques in addressing complex scientific questions.}, language = {en} }