@phdthesis{Pan2022, author = {Pan, Yufeng}, title = {Genetic and molecular analysis of heat stress induced transcriptional memory}, doi = {10.25932/publishup-56011}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560119}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 113}, year = {2022}, abstract = {Heat stress (HS) is one of the most common abiotic stresses, frequently affecting plant growth and crop production. With its fluctuating nature, HS episodes are frequently interspersed by stress-free intervals. Plants can be primed by HS, allowing them to survive better a recurrent stress episode. A memory of this priming can be maintained during stress-free intervals and this memory is closely correlated with transcriptional memory at several HS-inducible loci. This transcriptional memory is evident from hyper-induction of a locus upon a recurrent HS. ASCORBATE PEROXIDASE 2 (APX2) shows such hyper-induction upon recurring HS, however, the molecular basis of this transcriptional memory is not understood. Previous research showed that the HSinduced transcriptional memory at APX2 can last for up to seven days, and that it is controlled by cis-regulatory elements within the APX2 promoter. To identify regulators involved in HS transcriptional memory, an unbiased forward genetic screening using EMS mutated seeds of pAPX2::LUC was performed from this screen. Two EMS mutants with affected transcriptional memory of LUC were identified. I confirmed that both two EMS mutants resulted from the gene mutations of HISTONE ACETYLTRANSFERASE 1 (HAC1). Besides pAPX2::LUC, the HS-induced transcription of other HS memory genes were also affected in hac1 mutants. Moreover, HAC1 may promote HS transcriptional memory by acetylating promoters of HS memory genes. On the other hand, to identify cis-regulatory elements that are required for transcriptional memory of APX2, I performed promoter analysis of the four conserved HSEs identified within a functional APX2 promoter. I found out that one of the HSEs (HSE1) is necessary for both HS-induced APX2 transcription and transcriptional memory, while another one of HSEs (HSE2) is important for HS-induced APX2 transcriptional memory. I also found out that the HSE1 itself (with 10 bp of flanking sequence) is sufficient to confer HS-induced APX2 transcriptional memory, and HSE1 is also necessary for HSFA2 to bind on APX2 promoter and activate APX2 transcription. The findings will provide important clues for the molecular mechanism of transcriptional memory and will enable engineering of enhanced stress tolerance in crops.}, language = {en} } @phdthesis{Oberkofler2022, author = {Oberkofler, Vicky}, title = {Molecular basis of HS memory in Arabidopsis thaliana}, doi = {10.25932/publishup-56954}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569544}, school = {Universit{\"a}t Potsdam}, pages = {181}, year = {2022}, abstract = {Plants can be primed to survive the exposure to a severe heat stress (HS) by prior exposure to a mild HS. The information about the priming stimulus is maintained by the plant for several days. This maintenance of acquired thermotolerance, or HS memory, is genetically separable from the acquisition of thermotolerance itself and several specific regulatory factors have been identified in recent years. On the molecular level, HS memory correlates with two types of transcriptional memory, type I and type II, that characterize a partially overlapping subset of HS-inducible genes. Type I transcriptional memory or sustained induction refers to the sustained transcriptional induction above non-stressed expression levels of a gene for a prolonged time period after the end of the stress exposure. Type II transcriptional memory refers to an altered transcriptional response of a gene after repeated exposure to a stress of similar duration and intensity. In particular, enhanced re-induction refers to a transcriptional pattern in which a gene is induced to a significantly higher degree after the second stress exposure than after the first. This thesis describes the functional characterization of a novel positive transcriptional regulator of type I transcriptional memory, the heat shock transcription factor HSFA3, and compares it to HSFA2, a known positive regulator of type I and type II transcriptional memory. It investigates type I transcriptional memory and its dependence on HSFA2 and HSFA3 for the first time on a genome-wide level, and gives insight on the formation of heteromeric HSF complexes in response to HS. This thesis confirms the tight correlation between transcriptional memory and H3K4 hyper-methylation, reported here in a case study that aimed to reduce H3K4 hyper-methylation of the type II transcriptional memory gene APX2 by CRISPR/dCas9-mediated epigenome editing. Finally, this thesis gives insight into the requirements for a heat shock transcription factor to function as a positive regulator of transcriptional memory, both in terms of its expression profile and protein abundance after HS and the contribution of individual functional domains. In summary, this thesis contributes to a more detailed understanding of the molecular processes underlying transcriptional memory and therefore HS memory, in Arabidopsis thaliana.}, language = {en} }