@phdthesis{Lypova2021, author = {Lypova, Iryna}, title = {The galactic plane in gamma-rays above 10 TeV as seen with H.E.S.S.}, doi = {10.25932/publishup-50931}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509317}, school = {Universit{\"a}t Potsdam}, pages = {viii, 195}, year = {2021}, abstract = {The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes located in the Khomas Highland of Namibia. H.E.S.S. operates in a wide energy range from several tens of GeV to several tens of TeV, reaching the best sensitivity around 1 TeV or at lower energies. However, there are many important topics - such as the search for Galactic PeVatrons, the study of gamma-ray production scenarios for sources (hadronic vs. leptonic), EBL absorption studies - which require good sensitivity at energies above 10 TeV. This work aims at improving the sensitivity of H.E.S.S. and increasing the gamma-ray statistics at high energies. The study investigates an enlargement of the H.E.S.S. effective field of view using events with larger offset angles in the analysis. The greatest challenges in the analysis of large-offset events are a degradation of the reconstruction accuracy and a rise of the background rate as the offset angle increases. The more sophisticated direction reconstruction method (DISP) and improvements to the standard background rejection technique, which by themselves are effective ways to increase the gamma-ray statistics and improve the sensitivity of the analysis, are implemented to overcome the above-mentioned issues. As a result, the angular resolution at the preselection level is improved by 5 - 10\% for events at 0.5◦ offset angle and by 20 - 30\% for events at 2◦ offset angle. The background rate at large offset angles is decreased nearly to a level typical for offset angles below 2.5◦. Thereby, sensitivity improvements of 10 - 20\% are achieved for the proposed analysis compared to the standard analysis at small offset angles. Developed analysis also allows for the usage of events at large offset angles up to approximately 4◦, which was not possible before. This analysis method is applied to the analysis of the Galactic plane data above 10 TeV. As a result, 40 sources out of the 78 presented in the H.E.S.S. Galactic plane survey (HGPS) are detected above 10 TeV. Among them are representatives of all source classes that are present in the HGPS catalogue; namely, binary systems, supernova remnants, pulsar wind nebulae and composite objects. The potential of the improved analysis method is demonstrated by investigating the more than 10 TeV emission for two objects: the region associated with the shell-type SNR HESS J1731-347 and the PWN candidate associated with PSR J0855-4644 that is coincident with Vela Junior (HESS J0852-463).}, language = {en} } @phdthesis{Leser2018, author = {Leser, Eva}, title = {Eta Carinae}, doi = {10.25932/publishup-42814}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428141}, school = {Universit{\"a}t Potsdam}, pages = {X, 117}, year = {2018}, abstract = {Das außergew{\"o}hnliche Doppelsternsystem Eta Carinae fasziniert WissenschaftlerInnen und BeobachterInnen auf der s{\"u}dlichen Erdhalbkugel seit hunderten Jahren. Nach einem Supernova-{\"a}hnlichem Ausbruch war Eta Carinae zeitweise der hellste Stern am Nachthimmel. Heute sind durch zahlreiche Beobachtungen, von Radiowellen bis zu R{\"o}ntgenstrahlung, der Aufbau des Sternsystems und die Eigenschaften seiner Strahlung bis zu Energien von ~ 50 keV gut erforscht. Das Doppelsternsystem besteht aus zwei massiven Sternen (~ 30 und ~ 100 Sonnenmassen Gewicht) mit starken Sternwinden, {\"u}ber die sie kontinuierlich einen Teil ihrer Masse verlieren. Wenn diese Sternwinde kollidieren, entsteht auf beiden Seiten ein Kompressionsschock der das Plasma in der Kollisionszone aufheizt, was sich in R{\"o}ntgenstrahlung beobachten l{\"a}sst. Bei Energien oberhalb von ~ 50 keV ist der Ursprung der Strahlung nicht mehr thermisch: um ein Plasma auf die entsprechende Temperatur zu bringen, wird mehr mechanische Energie ben{\"o}tigt, als in den Sternwinden vorhanden. In hoch-energetischer Gamma-Strahlung ist Eta Carinae das einzige eindeutig detektierte Sternsystem seiner Art und sein Energiespektrum reicht bis zu ~ hundert GeV. Bodengebundene Gamma-Strahlungsexperimente haben in diesem Energiebereich den Vorteil von großen Detektorfl{\"a}chen. H.E.S.S. ist das einzige bodengebundene Gamma-Strahlungsexperiment auf der S{\"u}dhalbkugel und somit in der Lage, Eta Carinae in diesen Energien zu beobachten. H.E.S.S. misst Gamma-Strahlung mit Hilfe der elektromagnetischen Teilchenschauer, die sehr hoch-energetische Photonen in der Atmosph{\"a}re ausl{\"o}sen. Die gr{\"o}ßte Herausforderung der Messung von Eta Carinaes Strahlung mit H.E.S.S. ist die ultraviolette Strahlung des Carina Nebels, die zu einem Hintergrund f{\"u}hrt, der bis zu zehn mal st{\"a}rker ist als der Durchschnitt in H.E.S.S. In dieser Arbeit wird die erste Detektion eines Doppelsternsystems mit kollidierenden Sternwinden in sehr hoch-energetischer Gamma-Strahlung pr{\"a}sentiert und die Studien, die diese erm{\"o}glicht haben. Das differentielle Gamma-Strahlungsspektrum bis 700 GeV wird untersucht. Hadronische und leptonische Szenarios f{\"u}r den Ursprung der Gamma-Strahlung werden diskutiert und das hadronische Szenario wird aufgrund eines Vergleichs der K{\"u}hlzeiten bevorzugt.}, language = {en} } @phdthesis{Steppa2022, author = {Steppa, Constantin Beverly}, title = {Modelling the galactic population of very-high-energy gamma-ray sources}, doi = {10.25932/publishup-54947}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549478}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2022}, abstract = {The current generation of ground-based instruments has rapidly extended the limits of the range accessible to us with very-high-energy (VHE) gamma-rays, and more than a hundred sources have now been detected in the Milky Way. These sources represent only the tip of the iceberg, but their number has reached a level that allows population studies. In this work, a model of the global population of VHE gamma-ray sources based on the most comprehensive census of Galactic sources in this energy regime, the H.E.S.S. Galactic plane survey (HGPS), will be presented. A population synthesis approach was followed in the construction of the model. Particular attention was paid to correcting for the strong observational bias inherent in the sample of detected sources. The methods developed for estimating the model parameters have been validated with extensive Monte Carlo simulations and will be shown to provide unbiased estimates of the model parameters. With these methods, five models for different spatial distributions of sources have been constructed. To test the validity of these models, their predictions for the composition of sources within the sensitivity range of the HGPS are compared with the observed sample. With one exception, similar results are obtained for all spatial distributions, showing that the observed longitude profile and the source distribution over photon flux are in fair agreement with observation. Regarding the latitude profile and the source distribution over angular extent, it becomes apparent that the model needs to be further adjusted to bring its predictions in agreement with observation. Based on the model, predictions of the global properties of the Galactic population of VHE gamma-ray sources and the prospects of the Cherenkov Telescope Array (CTA) will be presented. CTA will significantly increase our knowledge of VHE gamma-ray sources by lowering the threshold for source detection, primarily through a larger detection area compared to current-generation instruments. In ground-based gamma-ray astronomy, the sensitivity of an instrument depends strongly, in addition to the detection area, on the ability to distinguish images of air showers produced by gamma-rays from those produced by cosmic rays, which are a strong background. This means that the number of detectable sources depends on the background rejection algorithm used and therefore may also be increased by improving the performance of such algorithms. In this context, in addition to the population model, this work presents a study on the application of deep-learning techniques to the task of gamma-hadron separation in the analysis of data from ground-based gamma-ray instruments. Based on a systematic survey of different neural-network architectures, it is shown that robust classifiers can be constructed with competitive performance compared to the best existing algorithms. Despite the broad coverage of neural-network architectures discussed, only part of the potential offered by the application of deep-learning techniques to the analysis of gamma-ray data is exploited in the context of this study. Nevertheless, it provides an important basis for further research on this topic.}, language = {en} } @phdthesis{Hoischen2018, author = {Hoischen, Clemens}, title = {Multi-Messenger Astronomy with H.E.S.S: the Starburst Galaxy NGC253 and the Search for Short Time-Scale Transients}, doi = {10.25932/publishup-42452}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424521}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2018}, abstract = {Gamma-ray astronomy has proven to provide unique insights into cosmic-ray accelerators in the past few decades. By combining information at the highest photon energies with the entire electromagnetic spectrum in multi-wavelength studies, detailed knowledge of non-thermal particle populations in astronomical objects and systems has been gained: Many individual classes of gamma-ray sources could be identified inside our galaxy and outside of it. Different sources were found to exhibit a wide range of temporal evolution, ranging from seconds to stable behaviours over many years of observations. With the dawn of both neutrino- and gravitational wave astronomy, additional messengers have come into play over the last years. This development presents the advent of multi-messenger astronomy: a novel approach not only to search for sources of cosmic rays, but for astronomy in general. In this thesis, both traditional multi-wavelength studies and multi-messenger studies will be presented. They were carried out with the H.E.S.S. experiment, an imaging air Cherenkov telescope array located in the Khomas Highland of Namibia. H.E.S.S. has entered its second phase in 2012 with the addition of a large, fifth telescope. While the initial array was limited to the study of gamma-rays with energies above 100 GeV, the new instrument allows to access gamma-rays with energies down to a few tens of GeV. Strengths of the multi-wavelength approach will be demonstrated at the example of the galaxy NGC253, which is undergoing an episode of enhanced star-formation. The gamma-ray emission will be discussed in light of all the information on this system available from radio, infrared and X-rays. These wavelengths reveal detailed information on the population of supernova remnants, which are suspected cosmic-ray accelerators. A broad-band gamma-ray spectrum is derived from H.E.S.S. and Fermi-LAT data. The improved analysis of H.E.S.S. data provides a measurement which is no longer dominated by systematic uncertainties. The long-term behaviour of cosmic rays in the starburst galaxy NGC253 is finally characterised. In contrast to the long time-scale evolution of a starburst galaxy, multi-messenger studies are especially intriguing when shorter time-scales are being probed. A prime example of a short time-scale transient are Gamma Ray Bursts. The efforts to understand this phenomenon effectively founded the branch of gamma-ray astronomy. The multi-messenger approach allows for the study of illusive phenomena such as Gamma Ray Bursts and other transients using electromagnetic radiation, neutrinos, cosmic rays and gravitational waves contemporaneously. With contemporaneous observations getting more important just recently, the execution of such observation campaigns still presents a big challenge due to the different limitations and strengths of the infrastructures. An alert system for transient phenomena has been developed over the course of this thesis for H.E.S.S. It aims to address many follow-up challenges in order to maximise the science return of the new large telescope, which is able to repoint much faster than the initial four telescopes. The system allows for fully automated observations based on scientific alerts from any wavelength or messenger and allows H.E.S.S. to participate in multi-messenger campaigns. Utilising this new system, many interesting multi-messenger observation campaigns have been performed. Several highlight observations with H.E.S.S. are analysed, presented and discussed in this work. Among them are observations of Gamma Ray Bursts with low latency and low energy threshold, the follow-up of a neutrino candidate in spatial coincidence with a flaring active galactic nucleus and of the merger of two neutron stars, which was revealed by the coincidence of gravitational waves and a Gamma-Ray Burst.}, language = {en} }