@phdthesis{Wang2018, author = {Wang, Li}, title = {Reprogrammable, magnetically controlled polymer actuators}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 107}, year = {2018}, abstract = {Polymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components. The current thesis investigates, whether a reprogrammable remotely controlled soft actuator can be realized by magneto-sensitive multiphase shape-memory copolymer network composites containing magnetite nanoparticles as magneto-sensitive multivalent netpoints. A central hypothesis was that a magnetically controlled two-way (reversible bidirectional) shape-memory effect in such nanocomposites can be achieved without application of external stress (freestanding), when the required orientation of the crystallizable actuation domains (ADs) can be ensured by an internal skeleton like structure formed by a second crystallizable phase determing the samples´s geometry, while magneto-sensitive iron oxide nanoparticles covalently integrated in the ADs allow remote temperature control. The polymer matrix of these composites should exhibit a phase-segregated morphology mainly composed of cyrstallizable ADs, whereby a second set of higher melting crystallites can take a skeleton like, geometry determining function (geometry determining domains, GDs) after programming of the composite and in this way the orientation of the ADs is established and maintained during actuation. The working principle for the reversible bidirectional movements in the multiphase shape-memory polymer network composite is related to a melting-induced contraction (MIC) during inductive heating and the crystallization induced elongation (CIE) of the oriented ADs during cooling. Finally, the amount of multivalent magnetosensitive netpoints in such a material should be as low as possible to ensure an adequate overall elasticity of the nanocomposite and at the same time a complete melting of both ADs and GDs via inductive heating, which is mandatory for enabling reprogrammability. At first, surface decorated iron oxide nanoparticles were synthesized and investigated. The coprecipitation method was applied to synthesize magnetic nanoparticles (mNPs) based on magnetite with size of 12±3 nm and in a next step a ring-opening polymerization (ROP) was utilized for covalent surface modification of such mNPs with oligo(ϵ-caprolactone) (OCL) or oligo(ω-pentadecalactone) (OPDL) via the "grafting from" approach. A successful coating of mNPs with OCL and OPDL was confirmed by differential scanning calorimetry (DSC) experiments showing melting peaks at 52±1 °C for mNP-OCL and 89±1 °C for mNP-OPDL. It was further explored whether two-layered surface decorated mNPs, can be prepared via a second surface-initiated ROP of mNP-OCL or mNP-OPDL with ω-pentadecalactone or ϵ-caprolactone. The observation of two distinct melting transitions in DSC experiments as well as the increase in molecular weight of the detached coatings determined by GPC and 1H-NMR indicated a successful synthesis of the twolayered nanoparticles mNP-OCL-OPDL and mNP-OPDL-OCL. In contrast TEM micrographs revealed a reduction of the thickness of the polymeric coating on the nanoparticles after the second ROP, indicating that the applied synthesis and purification required further optimization. For evaluating the impact of the dispersion of mNPs within a polymer matrix on the resulting inductive heating capability of composites, plain mNPs as well as OCL coated magnetite nanoparticles (mNP-OCLs) were physically incorporated into crosslinked poly(ε-caprolactone) (PCL) networks. Inductive heating experiments were performed with both networks cPCL/mNP and cPCL/mNP-OCL in an alternating magnetic field (AMF) with a magnetic field strength of H = 30 kA·m-1. Here a bulk temperature of Tbulk = 74±2 °C was achieved for cPCL/mNP-OCL, which was almost 20 °C higher than the melting transition of the PCL-based polymer matrix. In contrast, the composite with plain mNPs could only reach a Tbulk of 48±2 °C, which is not sufficient for a complete melting of all PCL crystallites as required for actuation. The inductive heating capability of a multiphase copolymer nanocomposite network (designed as soft actuators) containing surface decorated mNPs as covalent netpoints was investigated. Such composite was synthesized from star-shaped OCL and OPDL precursors, as well as mNP-OCLs via reaction with HDI. The weight ratio of OPDL and OCL in the starting reaction mixture was 15/85 (wt\%/wt\%) and the amount of iron oxide in the nanocomposite was 4 wt\%. DSC experiments revealed two well separated melting and crystallization peaks confirming the required phase-segregated morphology in the nanocomposite NC-mNP-OCL. TEM images could illustrate a phase-segregated morphology of the polymer matrix on the microlevel with droplet shaped regions attributed to the OPDL domains dispersed in an OCL matrix. The TEM images could further demonstrate that the nanoparticulate netpoints in NC-mNP-OCL were almost homogeneously dispersed within the OCL domains. The tests of the inductive heating capability of the nanocomposites at a magnetic field strength of Hhigh = 11.2 kA·m-1 revealed a achievable plateau surface temperature of Tsurf = 57±1 °C for NC-mNP-OCL recorded by an infrared video camera. An effective heat generation constant (̅P) can be derived from a multi-scale model for the heat generation, which is proportional to the rate of heat generation per unit volume of the sample. NC-mNP-OCL with homogeneously dispersed mNP-OCLs exhibited a ̅P value of 1.04±0.01 K·s- 1 at Hhigh, while at Hreset = 30.0 kA·m-1 a Tsurf of 88±1 °C (where all OPDL related crystallite are molten) and a ̅P value of 1.93±0.02 K·s-1 was obtained indicating a high magnetic heating capability of the composite. The free-standing magnetically-controlled reversible shape-memory effect (mrSME) was explored with originally straight nanocomposite samples programmed by bending to an angle of 180°. By switching the magnetic field on and off the composite sample was allowed to repetitively heat to 60 °C and cool to the ambient temperature. A pronounced mrSME, characterized by changes in bending angle of Δϐrev = 20±3° could be obtained for a composite sample programmed by bending when a magnetic field strength of Hhigh = 11.2 kA·m-1 was applied in a multi-cyclic magnetic bending experiment with 600 heating-cooling cycles it could be shown that the actuation performance did not change with increasing number of test cycles, demonstrating the accuracy and reproducibility of this soft actuator. The degree of actuation as well as the kinetics of the shape changes during heating could be tuned by variation of the magnetic filed strength between Hlow and Hhigh or the magnetic field exposure time. When Hreset = 30.0 kA·m-1 was applied the programmed geometry was erased and the composite sample returned to it´s originally straight shape. The reprogrammability of the nanocomposite actuators was demonstrated by one and the same test specimen first exhibiting reversible angle changes when programmed by bending, secondly reprogrammed to a concertina, which expands upon inductive heating and contracts during cooling and finally reprogrammed to a clip like shape, which closes during cooling and opens when Hhigh was applied. In a next step the applicability of the presented remote controllable shape-memory polymer actuators was demonstrated by repetitive opening and closing of a multiring device prepared from NC-mNP-OCL, which repetitively opens and closes when a alternating magnetic field (Hhigh = 11.2 kA·m-1) was switched on and off. For investigation of the micro- and nanostructural changes related to the actuation of the developed nanocomposite, AFM and WAXS experiments were conducted with programmed nanocomposite samples under cyclic heating and cooling between 25 °C and 60 °C. In AFM experiments the change in the distance (D) between representative droplet-like structures related to the OPDL geometry determining domains was used to calculate the reversible change in D. Here Drev = 3.5±1\% was found for NC-mNP-OCL which was in good agreement with the results of the magneto-mechanical actuation experiments. Finally, the analysis of azimuthal (radial) WAXS scattering profiles could support the oriented crystallization of the OCL actuation domains at 25 °C. In conclusion, the results of this work successfully demonstrated that shape-memory polymer nanocomposites, containing mNPs as magneto-sensitive multifunctional netpoints in a covalently crosslinked multiphase polymer matrix, exhibit magnetically (remotely) controlled actuations upon repetitive exposure to an alternating magnetic field. Furthermore, the (shape) memory of such a nanocomposite can be erased by exposing it to temperatures above the melting temperature of the geometry forming domains, which allows a reprogramming of the actuator. These findings would be relevant for designing novel reprogrammable remotely controllable soft polymeric actuators.}, language = {en} } @phdthesis{Brunacci2021, author = {Brunacci, Nadia}, title = {Oligodepsipeptides as matrix for drug delivery systems and submicron particulate carriers}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{Tung2021, author = {Tung, Wing Tai}, title = {Polymeric fibrous scaffold on macro/microscale towards tissue regeneration}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{You2017, author = {You, Zewang}, title = {Conformational transition of peptide-functionalized cryogels enabling shape-memory capability}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2017}, language = {en} } @phdthesis{Liu2021, author = {Liu, Yue}, title = {Polymeric objects switchable between two shapes}, school = {Universit{\"a}t Potsdam}, pages = {xv, 73}, year = {2021}, abstract = {As the ongoing trend of developing smart materials that can reversibly switch geometry stimulated by environmental control addressed increasing attention in many research fields, especially for biomedical or soft robotic applications. Shape-memory polymers (SMPs), which can change shape, stiffness, size, and structure when exposed to an external stimulus, are intensively explored as encouraging material candidates for achieving multifunctionality, and for miniaturizing into micro-components to expand the applications. Besides, the geometrical design has gained growing attention for creating engineering applications, such as bi-stable mechanisms, and has the potential to be explored by implementing SMP for new functions. In this context, this thesis aimed to develop smart micro-/nano-objects based on SMP and explore new functions by geometrical design using SMP. Here, two types of stimuli-responsive objects capable of one-way temperature-memory effect (TME) or free-standing reversible actuation e.g., micro/nanofibers (i) and microcuboids (ii) at different aspects were explored. At first, it was hypothesized that the advanced atomic force microscopy (AFM) platform can be established to study individual polymeric micro-/nanofibers (i) in terms of incorporation and characterization of a reversible shape-memory actuation capability. Crystallizable material was chosen for preparing the fibers and the molecular alignment within the fibers among different diameters will influence the crystallization-induced elongation during cooling that determined the reversible effect. For the second type, microcuboids (ii), it was hypothesized that a programming and quantification approach can be developed to enable the realization and characterization of a one-way micro-TME and micro-shape-memory polymer actuation (SMPA) in microcuboids. The responsive temperature of one-way shape transformation can be tuned by programming temperature (Tp) and the separation temperature (Tsep) for post-programming can influence the actuation. Finally, a geometrical design with bi-stability was combined with SME to create new functions of shape actuation. It was hypothesized that the predicted bi-stable or mono-stable structures can be achieved with the aid of digital fabrication methods. Using shape-memory effect (SME), the alteration of bi-stable and mono-stable can initiate shape transformation with a larger magnitude and higher energy output. In the first part, the method to quantify the reversible SMPA of a single micro/nano crystallizable fiber with geometry change during the actuation was explored. Electrospinning was used to prepare poly (ε-caprolactone) (PCL) micro/nanofiber with different diameters, which were fixed by UV glue and crosslinked on the structured silicon wafer. Using AFM, the programming, as well as the observation of recovery and reversible displacement of the fiber, were performed by vertical three-point bending at the free suspended part. A plateau tip was chosen to achieve stable contact and longer working distance for performing larger deformation, enabling intensified reversible SMPA of single fibers. In this way, programming strains of 39 ± 1\% or 46 ± 1\% were realized for fiber with a diameter of 1 ± 0.2 µm and 300 ± 50 nm, which were bent at 80 °C and fixed at 10 °C. Values for the reversible elongation of εrev = 3.4 ± 0.1\% and 10.5 ± 0.1\% were obtained for a single micro and nanofiber respectively between 10 and 60 °C. The higher actuation effect observed for nanofiber demonstrated that the highly compact and oriented crystallites in nanofibers, which determined the pronounced εrev compared to the thick microfibers. Besides, a stable reversible actuation of a nanofiber can be tracked by AFM tip up to 10 cycles, indicating a sustainable application can be achieved on the fiber actuators. The findings obtained for cPCL micro-/nano-fibers will help design and evaluate the next generation polymeric microactuators or micromanipulators. The second part of the thesis studies the shape-memory effect (SME) of a single individual SMP micro-object by controlling deformation temperatures during programming and actuation temperatures during reversible change. In this work, microcuboids of crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) elastomers with 18 wt\% vinyl acetate (VA) contents were successfully prepared by template-based replication from polydimethylsiloxane (PDMS) mold. The micro-TME and micro-SMPA were observed and studied based on micro-geometry change using optical microscopy (OM) and AFM. Different switching temperatures of shape recovery were achieved from 55 °C to 86 °C by tuning Tp from 55 °C to 100 °C, indicating a successful implementation of micro-TME on individual microcuboid. For micro-SMPA functionalization, microcuboids were deformed by compression at 100 °C and the change in single particle height was monitored during cyclic heating and cooling between various Tseps from 60 °C to 85 °C and 20 °C. The micro-SMPA on a single microcuboid was achieved with a reversible strain in the range of 2 to 7\%, whereby higher compression ratio CR and Tsep induced prominent reversible strain. The results achieved in this work demonstrated the successful functionalization of microcuboids with different SMEs by controlling temperatures during programming and actuation processes. Based on these achievements, such micro-objects can be further designed as on demand switchable microactuators or release systems with adjustable working temperatures. In the last part of the work, a new function of shape-memory polymeric bi-stable 3D structured film was designed and fabricated. The SME and geometrical design of compliant mechanics were merged to enable switching between bi-stable and mono-stable states, which generate snap movement that mimics the Venus flytrap. A truncated tetrahedron structure with a slope angle as a tunable parameter to alter the bi-stability was chosen for the study to combine with SME. It was anticipated that the structured film designed with a slope angle of 30° exhibited mono-stable behavior, and such a structure with a slope angle of 45° exhibited bi-stable behavior. Then the structured SMP film of designed mono-stable shape was successfully fabricated using soft lithography based on 3D printed master molds supported from digital manufacturing. The structured mold was also used in programming the SMP film into the structure with a higher slope angle to attain bi-stability. Finally, the switching between bi-stable and mono-stable states was successfully realized using SME, which introduces snapping movement triggered by heat. The implementation of compliant mechanisms by the SME increased the magnitude of thermally induced reconfiguration without additional external force. To sum up, the results of the thesis support the development of smart objects capable of one-way micro-TME, free-standing reversible actuation, or bi-stability mediated shape-memory reconfiguration. Electrospinning and template-based method were used for fabrication with good control of geometry and low size dispersity. Microscopy methods especially the AFM platform with decent sensitivity was developed for implementation as well as characterization of SME on individual micro-/nanoobjects. Implementation of bi-stability improves the shape transformation amplitude of thermally triggered SMP. These findings can give novel insights for designing polymer-based actuators or soft robotics.}, language = {en} } @phdthesis{Farhan2019, author = {Farhan, Muhammad}, title = {Multifunctional reprogrammable actuators based on polymer networks with crystallizable segments}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Soft polymeric materials, which can change their shape reversibly in response to external stimuli, can serve as actuating components in robotic systems. Besides electroactive polymers (EAP), hydrogels and liquid crystalline elastomers (LCE), crosslinked crystallizable shape-memory polymers networks have been introduced recently as reprogrammable thermo-reversible actuators. The integration of additional functions in such materials will lead to multifunctional polymeric actuators, which meet the complex requirements of modern robotic applications. The primary aim of this thesis was to achieve multifunctional reprogrammable thermo-reversible actuators based on thermoplastic polymers. Here, three different actuators providing additional functionalities such as surface modification capability (i), self-healing capability (ii) or a tailorable non-response function enabling noncontinuous multi-step motions (iii) were realized. At first, it was hypothesized that surface modifiable polymeric actuators (i) can be achieved by crosslinking of crystallizable thermoplastic terpolymers having reactive moieties, where subsequent thermomechanical programming enables reversible actuations while the sustained reactive groups allow post surface modification. For the second actuator type (ii) it was hypothesized that self-healing during reprogramming of polymeric actuators prepared by crosslinking of crystallizable linear homopolymers, can be achieved by adjusting the amount of freely interpenetrating extractable polymer moieties. Finally, it was hypothesized that thermo-reversible actuators providing a non-response function (iii) and thus enable multistep motions upon continuous normal stimulation, can be achieved by a crosslinked blend of two thermoplastic polymers with co-continuous morphology having a well-separated melting and crystallization transitions. In addition, these actuators can be physically reprogrammed by heating above all melting transitions to provide a different actuating shape. In this study, surface functionalizable actuators were realized from crosslinked poly[(ethylene)-co-(ethyl acrylate)-co-(maleic anhydride)] (cPEEAMA) based networks. Here crystallizable polyethylene (PE) segments should serve as actuation segments, ethyl acrylate (EA) provides elasticity to the system required for deformation, while reactive maleic anhydride (MA) will be used as chemically modifiable entities for post surface modification. Networks with varied crosslink density were prepared and its effect on thermomechanical properties as well as actuation performance was analyzed. Cyclic thermomechanical experiments were employed to investigate the actuation capability, which revealed a reversible actuation (ε׳rev) between 5 and 15\%. Fourier-transform infrared spectroscopy (FTIR) measurements confirmed that MA groups were sustained at the sample surface after processing and programming, which could be modified by reaction with ethylene diamine. Such amine functionalization allows the attachment of bioactive molecules to the actuator surface, which might provide a route to actuating substrates for biotechnology. Self-healable actuating materials were realized by poly(ε-caprolactone) (PCL) polymer networks with extractable linear PCL fractions of 5 to 60 wt\%. A detailed evaluation of the actuation capabilities by cyclic experiments revealed the highest reversible change in strain of Δε = 24\% for the cPCL network with 30 wt\% of linear polymer. The thermal treatment of damaged samples resulted in the healing of the network when heated to 80 °C. Here a linear polymer fraction ≥ 30 wt\% was necessary to achieve a self-healing efficiency of ≥ 50\%. The application of such high temperatures erases the programmed actuator shape and at the same time allows to reprogram a new actuating shape. Such sustainable actuators with self-healing function are of great interest for future robotic devices. Afore mentioned actuators operate continuously between two shapes and their movements can only be interrupted when the temperature is stopped. To overcome this limitation, noncontinuously responding actuators enabling multi-step actuation were realized from crosslinked blend networks prepared from PCL and poly[(ethylene)-co-(vinyl acetate)] (PEVA). These polymers (PCL and PEVA) were selected due to their immiscible character, where crystallizable PE and PCL segments provide two different actuation units, while vinyl acetate (VA) segment enabled sufficient elasticity of the system. A gap of 20 K in the melting and crystallization temperature of PE and PCL was achieved by selecting PEVA with 5 wt\% VA content (cPCL-PEVA5) providing a co-continuous phase morphology. Cyclic thermomechanical investigations were employed to investigate noncontinuous actuation, which revealed a high Δε = 25\% with a similar contribution from PCL and PE actuation units with a non-response region in the temperature range from 50 to 71 °C in heating step and 30 to 60 °C in cooling step. The actuation related to PCL part changed from 13 to 2\% by altering the heating and cooling rates from 3 to 10 K·min-1. Free-standing reversible noncontinuous actuation was realized by rotating demonstrator which exhibits reversible angle change in a custom-made setup. For this purpose, cPCL-PEVA5 stripe was programmed by twisting and reversible rotational actuation was realized from 0 to 180° while pausing in the 90° position during non-response. These blends can be physically programmed to perform reversible noncontinuous actuations, while the programmed geometry can be erased by heating it to temperature above all melting transitions. By physically reprogramming of the material various different actuation modes can be obtained. Such a noncontinuous actuator would be relevant for designing interruptive actuating soft robots at continuous trigger signals.}, language = {en} } @phdthesis{Altabal2021, author = {Altabal, Osamah}, title = {Design and fabrication of geometry-assisted on-demand dosing systems}, doi = {10.25932/publishup-53244}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532441}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 122}, year = {2021}, abstract = {The controlled dosage of substances from a device to its environment, such as a tissue or an organ in medical applications or a reactor, room, machinery or ecosystem in technical, should ideally match the requirements of the applications, e.g. in terms of the time point at which the cargo is released. On-demand dosage systems may enable such a desired release pattern, if the device contain suitable features that can translate external signals into a release function. This study is motivated by the opportunities arising from microsystems capable of an on-demand release and the contributions that geometrical design may have in realizing such features. The goals of this work included the design, fabrication, characterization and experimental proof-of-concept of geometry-assisted triggerable dosing effect (a) with a sequential dosing release and (b) in a self-sufficient dosage system. Structure-function relationships were addressed on the molecular, morphological and, with a particular attention, the device design level, which is on the micrometer scale. Models and/or computational tools were used to screen the parameter space and provide guidance for experiments.}, language = {en} } @phdthesis{Bhaskar2020, author = {Bhaskar, Thanga Bhuvanesh Vijaya}, title = {Biomimetic layers of extracellular matrix glycoproteins as designed biointerfaces}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {The goal of regenerative medicine is to guide biological systems towards natural healing outcomes using a combination of niche-specific cells, bioactive molecules and biomaterials. In this regard, mimicking the extracellular matrix (ECM) surrounding cells and tissues in vivo is an effective strategy to modulate cell behaviors. Cellular function and phenotype is directed by the biochemical and biophysical signals present in the complex 3D network of ECMs composed mainly of glycoproteins and hydrophilic proteoglycans. While cellular modulation in response to biophysical cues emulating ECM features has been investigated widely, the influence of biochemical display of ECM glycoproteins mimicking their presentation in vivo is not well characterized. It remains a significant challenge to build artificial biointerfaces using ECM glycoproteins that precisely match their presentation in nature in terms of morphology, orientation and conformation. This challenge becomes clear, when one understands how ECM glycoproteins self-assemble in the body. Glycoproteins produced inside the cell are secreted in the extra-cellular space, where they are bound to the cell membrane or other glycoproteins by specific interactions. This leads to elevated local concentration and 2Dspatial confinement, resulting in self-assembly by the reciprocal interactions arising from the molecular complementarity encoded in the glycoprotein domains. In this thesis, air-water (A-W) interface is presented as a suitable platform, where self-assembly parameters of ECM glycoproteins such as pH, temperature and ionic strength can be controlled to simulate in vivo conditions (Langmuir technique), resulting in the formation of glycoprotein layers with defined characteristics. The layer can be further compressed with surface barriers to enhance glycoprotein-glycoprotein contacts and defined layers of glycoproteins can be immobilized on substrates by horizontal lift and touch method, called Langmuir-Sch{\"a}fer (LS) method. Here, the benefit of Langmuir and LS methods in achieving ECM glycoprotein biointerfaces with controlled network morphology and ligand density on substrates is highlighted and contrasted with the commonly used (glyco)protein solution deposition (SO) method on substrates. In general, the (glyco)protein layer formation by SO is rather uncontrolled, influenced strongly by (glyco)protein-substrate interactions and it results in multilayers and aggregations on substrates, while the LS method results in (glyco)proteins layers with a more homogenous presentation. To achieve the goal of realizing defined ECM layers on substrates, ECM glycoproteins having the ability to self-assemble were selected: Collagen-IV (Col-IV) and fibronectin (FN). Highly packed FN layer with uniform presentation of ligands was deposited on polydimethysiloxane VIII (PDMS) by LS method, while a heterogeneous layer was formed on PDMS by SO with prominent aggregations visible. Mesenchymal stem cells (MSC) on PDMS equipped with FN by LS exhibited more homogeneous and elevated vinculin expression and weaker stress fiber formation than on PDMS equipped with FN by SO and these divergent responses could be attributed to the differences in glycoprotein presentation at the interface. Col-IV are scaffolding components of specialized ECM called basement membranes (BM), and have the propensity to form 2D networks by self-polymerization associated with cells. Col- IV behaves as a thin-disordered network at the A-W interface. As the Col-IV layer was compressed at the A-W interface using trough barriers, there was negligible change in thickness (layer thickness ~ 50 nm) or orientation of molecules. The pre-formed organization of Col-IV was transferred by LS method in a controlled fashion onto substrates meeting the wettability criterion (CA ≤ 80°). MSC adhesion (24h) on PET substrates deposited with Col-IV LS films at 10, 15 and 20 mN·m-1 surface pressures was (12269.0 ± 5856.4) cells for LS10, (16744.2 ± 1280.1) cells for LS15 and (19688.3 ± 1934.0) cells for LS20 respectively. Remarkably, by selecting the surface areal density of Col-IV on the Langmuir trough on PET, there is a linear increase between the number of adherent MSCs and the Col-IV ligand density. Further, FN has the ability to self-stabilize and form 2D networks (even without compression) while preserving native β-sheet structure at the A-W interface on a defined subphase (pH = 2). This provides the possibility to form such layers on any vessel (even on standard six-well culture plates) and the cohesive FN layers can be deposited by LS transfer, without the need for expensive LB instrumentation. Multilayers of FN can be immobilized on substrates by this approach, as easily as Layer-by-Layer method, even without the need for secondary adlayer or activated bare substrate. Thus, this facile glycoprotein coating strategy approach is accessible to many researchers to realize defined FN films on substrates for cell culture. In conclusion, Langmuir and LS methods can create biomimetic glycoprotein biointerfaces on substrates controlling aspects of presentation such as network morphology and ligand density. These methods will be utilized to produce artificial BM mimics and interstitial ECM mimics composed of more than one ECM glycoprotein layer on substrates, serving as artificial niches instructing stem cells for cell-replacement therapies in the future.}, language = {en} } @phdthesis{Moradian2022, author = {Moradian, Hanieh}, title = {Modulation of human macrophage activity by mRNA-mediated genetic engineering}, doi = {10.25932/publishup-54857}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548579}, school = {Universit{\"a}t Potsdam}, pages = {IX, 148}, year = {2022}, abstract = {Macrophages play an integral role for the innate immune system. It is critically important for basic research and therapeutic applications to find approaches to potentially modulate their function as the first line of defense. Transient genetic engineering via delivery of synthetic mRNA can serve for such purposes as a robust, reliable and safe technology to modulate macrophage functions. However, a major drawback particularly in the transfection of sensitive immune cells such as macrophages is the immunogenicity of exogenous IVT-mRNAs. Consequently, the direct modulation of human macrophage activity by mRNA-mediated genetic engineering was the aim of this work. The synthetic mRNA can instruct macrophages to synthesize specific target proteins, which can steer macrophage activity in a tailored fashion. Thus, the focus of this dissertation was to identify parameters triggering unwanted immune activation of macrophages, and to find approaches to minimize such effects. When comparing different carrier types as well as mRNA chemistries, the latter had unequivocally a more pronounced impact on activation of human macrophages and monocytes. Exploratory investigations revealed that the choice of nucleoside chemistry, particularly of modified uridine, plays a crucial role for IVT-mRNA-induced immune activation, in a dose-dependent fashion. Additionally, the contribution of the various 5' cap structures tested was only minor. Moreover, to address the technical aspects of the delivery of multiple genes as often mandatory for advanced gene delivery studies, two different strategies of payload design were investigated, namely "bicistronic" delivery and "monocistronic" co-delivery. The side-by-side comparison of mRNA co-delivery via a bicistronic design (two genes, one mRNA) with a monocistronic design (two gene, two mRNAs) unexpectedly revealed that, despite the intrinsic equimolar nature of the bicistronic approach, it was outperformed by the monocistronic approach in terms of reliable co-expression when quantified on the single cell level. Overall, the incorporation of chemical modifications into IVT-mRNA by using respective building blocks, primarily with the aim to minimize immune activation as exemplified in this thesis, has the potential to facilitate the selection of the proper mRNA chemistry to address specific biological and clinical challenges. The technological aspects of gene delivery evaluated and validated by the quantitative methods allowed us to shed light on crucial process parameters and mRNA design criteria, required for reliable co-expression schemes of IVT-mRNA delivery.}, language = {en} } @phdthesis{Jiang2019, author = {Jiang, Yi}, title = {Tailoring surface functions of micro/nanostructured polymeric substrates by thermo-mechanical treatments}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2019}, language = {en} } @phdthesis{Nie2022, author = {Nie, Yan}, title = {Modulating keratinocyte and induced pluripotent stem cell behavior by microenvironment design or temperature control}, pages = {xiv, 100}, year = {2022}, abstract = {Under the in vivo condition, a cell is continually interacting with its surrounding microenvironment, which is composed of its neighboring cells and the extracellular matrix (ECM). These components generate and transmit the microenvironmental signals to regulate the fate and function of the target cells. Except the signals from the microenvironment, stimuli from the ambient environment, such as temperature changes, also play an important in modulating the cell behaviors, which are considered as regulators from the macroenvironment. In this regard, recapitulation of these environmental factors to steer cell function will be of crucial importance for therapeutic purposes and tissue regeneration. Although the role of a variety of environmental factors has been evaluated, it is still challenging to identify and provide the appropriate factors, which are required for optimizing the survival of cells and for ensuring effective cell functions. Thus, in vitro recreating the environmental factors that are present in the extracellular environment would help to understand the mechanism of how cells sense and process those environmental signals. In this context, this thesis is aimed to harness these environmental parameters to guide cell responses. Here, human induced pluripotent stem cells (hiPSCs) and human keratinocytes (KTCs), HaCaT cells, were used to investigate the impact of signals from the microenvironment or stimuli from the macroenvironment. Firstly, polydopamine (PDA) or chitosan (CS) modifications were applied to generate different substrate surfaces for hiPSCs and KTCs (Chapter 4 to Chapter 6). Our results showed that the PDA modification was efficient to increase the cell-substrate adhesion and consequently promoted cell spreading. While CS modification was able to decrease the cell-substrate adhesion and enhance the cell-cell interaction, which enabled the morphology shift from monolayered cells to multicellular spheroids. The quantitative result was acquired using the atomic force microscopy (AFM)-based single-cell force spectroscopy. The balance between the cell-substrate and cell-cell adhesion yielded a net force, which determined the preference of the cell to adhere to its neighboring cells or to the substrate. The difference in the adhesive behaviors further affected the cellular function, such as the proliferation and differentiation potential of both hiPSCs and HaCaT cells. Next, the cyclic temperature changes (ΔT) were selected here to study the influence of macroenvironmental stimuli on hiPSCs and KTCs (Chapter 7 and Chapter 8). The macroenvironmental temperature ranging from 10.0 ± 0.1 °C to 37.0 ± 0.1 °C was achieved using a thermal chamber equipped with a temperature controller. This temperature range was selected to explore the responses of hiPSCs to the extreme environments, while a temperature variation between 25.0 ± 0.1 °C and 37.0 ± 0.1 °C was applied to mimic the ambient temperature variations experienced by the skin epithelial KTCs. The ΔT led to cell stiffening in both hiPSCs and HaCaT cells in a cytoskeleton-dependent manner, which was measured by AFM. Specifically, in hiPSCs, the cell stiffening was resulted from the rearrangement of the actin skeleton; in HaCaT cells, was due to the difference of the Keratin (KRT) filaments. Except for inducing cell hardening, ΔT also caused differences in the protein expression profiles in hiPSCs or HaCaT cells, compared to those without ΔT treatment, which might be attributed to the alterations in their cytoskeleton structures. To sum up, the results of the thesis demonstrated how individual factors from the micro-/macro-environment can be harnessed to modulate the behaviors of hiPSCs and HaCaT cells. Engineering the microenvironmental cues using surface modification and exploiting the macroenvironmental stimuli through temperature control were identified as precise and potent approaches to steer hiPSC and HaCaT cell behaviors. The application of AFM served as a non-invasive and real-time monitoring platform to trace the change in cell topography and mechanics induced by the environmental signals, which provide novel insights into the cell-environment interactions.}, language = {en} } @phdthesis{Saretia2021, author = {Saretia, Shivam}, title = {Modulating ultrathin films of semi-crystalline oligomers by Langmuir technique}, doi = {10.25932/publishup-54210}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542108}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 109}, year = {2021}, abstract = {Polymeric films and coatings derived from semi-crystalline oligomers are of relevance for medical and pharmaceutical applications. In this context, the material surface is of particular importance, as it mediates the interaction with the biological system. Two dimensional (2D) systems and ultrathin films are used to model this interface. However, conventional techniques for their preparation, such as spin coating or dip coating, have disadvantages, since the morphology and chain packing of the generated films can only be controlled to a limited extent and adsorption on the substrate used affects the behavior of the films. Detaching and transferring the films prepared by such techniques requires additional sacrificial or supporting layers, and free-standing or self supporting domains are usually of very limited lateral extension. The aim of this thesis is to study and modulate crystallization, melting, degradation and chemical reactions in ultrathin films of oligo(ε-caprolactone)s (OCL)s with different end-groups under ambient conditions. Here, oligomeric ultrathin films are assembled at the air-water interface using the Langmuir technique. The water surface allows lateral movement and aggregation of the oligomers, which, unlike solid substrates, enables dynamic physical and chemical interaction of the molecules. Parameters like surface pressure (π), temperature and mean molecular area (MMA) allow controlled assembly and manipulation of oligomer molecules when using the Langmuir technique. The π-MMA isotherms, Brewster angle microscopy (BAM), and interfacial infrared spectroscopy assist in detecting morphological and physicochemical changes in the film. Ultrathin films can be easily transferred to the solid silicon surface via Langmuir Schaefer (LS) method (horizontal substrate dipping). Here, the films transferred on silicon are investigated using atomic force microscopy (AFM) and optical microscopy and are compared to the films on the water surface. The semi-crystalline morphology (lamellar thicknesses, crystal number densities, and lateral crystal dimensions) is tuned by the chemical structure of the OCL end-groups (hydroxy or methacrylate) and by the crystallization temperature (Tc; 12 or 21 °C) or MMAs. Compression to lower MMA of ~2 {\AA}2, results in the formation of a highly crystalline film, which consists of tightly packed single crystals. Preparation of tightly packed single crystals on a cm2 scale is not possible by conventional techniques. Upon transfer to a solid surface, these films retain their crystalline morphology whereas amorphous films undergo dewetting. The melting temperature (Tm) of OCL single crystals at the water and the solid surface is found proportional to the inverse crystal thickness and is generally lower than the Tm of bulk PCL. The impact of OCL end-groups on melting behavior is most noticeable at the air-solid interface, where the methacrylate end-capped OCL (OCDME) melted at lower temperatures than the hydroxy end-capped OCL (OCDOL). When comparing the underlying substrate, melting/recrystallization of OCL ultrathin films is possible at lower temperatures at the air water interface than at the air-solid interface, where recrystallization is not visible. Recrystallization at the air-water interface usually occurs at a higher temperature than the initial Tc. Controlled degradation is crucial for the predictable performance of degradable polymeric biomaterials. Degradation of ultrathin films is carried out under acidic (pH ~ 1) or enzymatic catalysis (lipase from Pseudomonas cepcia) on the water surface or on a silicon surface as transferred films. A high crystallinity strongly reduces the hydrolytic but not the enzymatic degradation rate. As an influence of end-groups, the methacrylate end-capped linear oligomer, OCDME (~85 ± 2 \% end-group functionalization) hydrolytically degrades faster than the hydroxy end capped linear oligomer, OCDOL (~95 ± 3 \% end-group functionalization) at different temperatures. Differences in the acceleration of hydrolytic degradation of semi-crystalline films were observed upon complete melting, partial melting of the crystals, or by heating to temperatures close to Tm. Therefore, films of densely packed single crystals are suitable as barrier layers with thermally switchable degradation rates. Chemical modification in ultrathin films is an intricate process applicable to connect functionalized molecules, impart stability or create stimuli-sensitive cross-links. The reaction of end-groups is explored for transferred single crystals on a solid surface or amorphous monolayer at the air-water interface. Bulky methacrylate end-groups are expelled to the crystal surface during chain-folded crystallization. The density of end-groups is inversely proportional to molecular weight and hence very pronounced for oligomers. The methacrylate end-groups at the crystal surface, which are present at high concentration, can be used for further chemical functionalization. This is demonstrated by fluorescence microscopy after reaction with fluorescein dimethacrylate. The thermoswitching behavior (melting and recrystallization) of fluorescein functionalized single crystals shows the temperature-dependent distribution of the chemically linked fluorescein moieties, which are accumulated on the surfaces of crystals, and homogeneously dispersed when the crystals are molten. In amorphous monolayers at the air-water interface, reversible cross-linking of hydroxy-terminated oligo(ε-caprolactone) monolayers using dialdehyde (glyoxal) lead to the formation of 2D networks. Pronounced contraction in the area occurred for 2D OCL films in dependence of surface pressure and time indicating the reaction progress. Cross linking inhibited crystallization and retarded enzymatic degradation of the OCL film. Altering the subphase pH to ~2 led to cleavage of the covalent acetal cross-links. Besides as model systems, these reversibly cross-linked films are applicable for drug delivery systems or cell substrates modulating adhesion at biointerfaces.}, language = {en} } @phdthesis{Yan2021, author = {Yan, Wan}, title = {Shape-Memory effects of thermoplatic multiblock copolymers with overlapping thermal transitions}, year = {2021}, language = {en} }